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1.  INTRODUCTION 

 This report reviews the recent literature on the design of adaptive human-computer 

interfaces for control of complex systems and their application in a variety of domains, 

including control of technological systems, process control, aviation systems, flight 

navigation, database design and management, and computer software development and 

utilization.  According to Rothrock (2002), an adaptive interface autonomously adapts its 

displays and available actions to current goals and abilities of the user by monitoring user 

status, the system task, and the current situation. In other words, an adaptive user interface 
aims to adapt itself to the characteristics of individual users and their specific ways of 

performing tasks while using an application system (Kühme, 1993; Houlier, Grau and Valot, 

2003). It is widely accepted that such an adaptation requires the interface to maintain 

embedded models of users and tasks.  It should also be noted that the adaptive interface 

acts primarily as an intelligent intermediary that dynamically allocates the tasks and task 

components to either system or operator (Morris, Rouse and Ward, 1988; Chignell and 

Hancock, 1988; Frey, Rouse and Garris, 1992). 

 

1.1  Adaptive systems, automation, control, and interfaces 
Despite the long history of research on adaptive control and considerable practical 

success of adaptive strategies, a satisfactory definition of adaptation remains elusive (Rouse, 

1988, 1990; Zames, 1998; Hettinger and Haas, 2003).  According to Wickens (1992), adaptive 

systems are those in which some characteristic of the system changes or adapts, usually in 

response to measured or inferred characteristics of the human user. Adaptive systems are 

systems, which can alter aspects of their structure, functionality or interface in order to 

accommodate the differing needs of individuals or groups of users and the changing needs of 

users over time (Benyon 1987; Andes and Rouse., 1992). A common idea is that adaptation 

occurs when parameters inside a controller vary in response to changes in the environment.  

According to Zames (1998), there is no clear separation between the concepts of adaptation 

and nonlinear feedback, or between research on adaptive control and nonlinear stability.    

The other two important ideas in the context of this review are the concepts of adaptive 

automation and adaptive interfaces. Hilburn, Parasuraman, and Mouloua (1995) define adaptive 

automation as the real-time allocation of functions between human operator and automated 

system. According to Parasuraman (2002), the adaptive automation involves the human-

computer systems in which the “division of labor” and/or the interface between human and 

machine agents is not fixed at system design, but can vary dynamically during system operations. 

An adaptive interface is one where the appearance, function or content of the interface can be 
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changed by the interface (or the underlying application) itself in response to the user’s interaction 

with it (Keeble and Macredie, 2000). Rouse, Geddes, and Curry (1988) defined an adaptive 

interface from a goal-oriented perspective. The reason for its existence is for the operator to 

remain in control and be provided with aiding that adapts to current needs and capabilities, in 

order to utilize human and computer resources optimally and, thereby, enhance overall 

performance.  

Other definitions of adaptive interfaces differ due to their intended primary application. 

For example, according to Hettinger (2003), an adaptive interface consists of an ensemble of 

displays and controls whose features can be made to change in real time in response to 

variations in parameters indexing the state of the user—either some internal state, such as level 

of cognitive workload or engagement in a particular task  

(e.g. Pope et al., 1995), and/ or a relevant external task-related condition, such as the nature, 

number and priority of tasks to be performed within a given unit of time (e.g.  

Mulgund et al., 2002). According to Arai et al. (1993), an interactive adaptation interface is the 

interface that is changing according the given task considering the user features such as skill 

level, techniques, characteristics, physical condition, etc.  

An adaptive support system facilitates the human decision-making judgments by adapting 

support to the high-level cognitive needs of the users, task characteristics, and decision contexts 

(Fazlollahi et al., 1997).  Langley (1998) stated that adaptivity is a software artifact that improves 

its ability to interact with a user by constructing a user model based on partial experience with 

that user. The term active user interface has also been used in the subject literature. According to 

Brown and Santos (1999), the active user interfaces serve as actuators in the human-machine 

interface, and allows the user to interact with the computer in a naturalistic/symbiotic manner. 

Furthermore, an intelligent interface was defined as smoothly changing its behavior to fit with 

users’ knowledge, abilities and preferences, usually with advanced dialogue (and multimodal), 

capabilities (Hook, 1998). According to Takahashi et al. (1994) an adaptive interface is an 

intelligent interface that can accommodate the form of human machine interaction according to 

the mental and physical state of operator.  

Finally, Soulard (1992) has introduced the concept of the self-adaptive interfaces, arguing 

that taking into account both physiological and cognitive human factors enables the system to 

propose dynamically a set of pertinent data according to the operational context and to the 

operator mental state. The goal is to facilitate and optimize his task especially in critical situations. 

The main difference between self-adaptive interfaces and adaptable interfaces is that the 

adaptable interfaces are defined during the design of the interface taking in consideration only 

predefined levels of competence. On the other hand, a system with self-adaptive interfaces 

adapts during run time the nature, the kind of communication devices and the logic of the 

interactions to the characteristics of the task and to the physiological and cognitive state of the 

2 



   
 

human operator.  

Zames (1998) proposed re-examination of the notions of adaptation and learning, on both 

conceptual and design levels. The main ideas behind this approach are outlined as follows. 

Adaptation and learning involve the acquisition of information about the plant (i.e., object to be 

controlled). Better performance requires more information. The performance function determines 

the nature of the information. For feedback control the appropriate notions of information are 

metric, locating the plant in a metric space in one of a set of neighborhoods of possible plants. 

Metric information can be quantified. The measures of metric complexity most frequently used for 

this purpose are (1) metric dimension (inverse n-width), and (2) metric entropy. The object of 

identification is to get this metric information, which takes time to acquire. The minimum time 

needed to acquire it is related to the metric complexity of a priori data. There are two monotonicity 

principles:  

 
- Monotonicity Principle 1.  

Information obtainable at any given time about behavior at some future 

target date is a monotone increasing function of time. 

- Monotonicity Principle 2.  
Optimal performance is a monotone increasing function of relevant 

information. 

 

The non-adaptive (robust) control performance is designed or optimized on the basis of a 

priori information. On the other hand, adaptive control is based on a posteriori information, and 

uses the extra information to achieve improved performance. To flesh out these ideas, a number 

of mathematical results will be outlined. Most of them have been obtained during the past ten 

years or so, and many require further development.  

Recent control literature indicates that with the increase in computational capability, 

computational strategies of control are directed more toward intelligent behavior that is 

increasingly being employed as a tool within an adaptive control technique. Major control 

research focus is on fuzzy logic, neural networks, genetic algorithms, and rule-based learning. 

Often, in the development of a particular system, more than one of these tools can be 

employed in a hybrid fashion (Warwick, 1996).  According to An et al. (1994), any intelligent 

module must be able to modify its behavior in response to its interaction with the current 

environment, and to be able to associate its current experiences with similar events that have 

happened in the past. This means that an intelligent module must be able to adapt and in a 

local manner. Within the context of intelligent control, and intelligent controller must be able to 

modify its strategy according to its current performance and this modification will affect the 

output of the controller for similar inputs (Tolle and Ersfi, 1992). 
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2.  ADAPTIVE INTERFACES IN AVIATION 
Early studies by Amalberti and his co-workers on the human-machine interfaces 

(Amalberti and Menu, 1985; Menu, Amalberti and Santucci, 1986; Menu and Amalberti, 1988) 

formed a basis for development of the adaptive interfaces in military aviation. Examples of such 

studies include cognitive modeling of the fighter aircraft process control and development of an 

intelligent on-board assistance systems (Amalberti and Deblon, 1992), decision-making under 

time-pressure in air combat missions (Amalberti, 1991), reasoning model of the fighter pilots 

(Amalberti, 1992), etc. Some of the more recent studies in this area are discussed below.  

2.1  Dynamic adaptive interfaces in aircraft aviation 
Bennett (2001) conducted a preliminary investigation of dynamic adaptive interfaces in 

the domain of aviation. The primary aim of this study was the examination of the potential 

performance decrements associated with an inconsistency and unpredictability of three adaptive 

interfaces. The standard, candidate, and adaptive interfaces were evaluated in their effectiveness 

in supporting Air Force pilots to complete a precision low-level navigation task. The standard 

interface includes: 1) controls (throttle and joystick) displays (a horizontal situation display (HSD), 

2) an attitude directional indicator (ADI), and a 3) head-up display (HUD) in de-clutter mode). . 

The candidate interface contained an alternative control (a force-reflecting stick) and an 

alternative display (configural flight director (CFD) - HUD). The force-reflecting stick controls the 

pilot's input (i.e. amount of force required to implement the control input) as a function of the 

plane's deviation from the optimal flight path. As opposed to the standard interface, which 

presents current values for task-relevant variables, the computational aiding component of the 

CFD-HUD calculates commanded control inputs (roll, pitch, and throttle) necessary to maintain 

the aircraft's position on the optimal flight path. The representational aiding component of the 

CFD-HUD combines this information in a centralized and easily interpretable display format.   

For the adaptive interface, the standard HUD was used under conditions of the optimal 

aircraft performance (deviations from the optimal flight path of less than 500-ft laterally or 50-ft 

vertically; and deviations between the ETA and tuning goal of less than 10 sec). The candidate 

HUD indicates that an aircraft is outside the above performance criteria. Two additional display 

sets were included to the adaptive interface. An ADI presented a vertical velocity and angle of 

attack indicators. Second one was an HSD similar to the HSD--moving map display in the F-

15E. This display presented an overhead perspective of the waypoints, course, and aircraft's 

position relative to them.  

The configural display (CFD) includes both a geometric format and a visual reference 

point: a rectangular box and a watermark symbol. The component of the rectangle serves as a 

reference to ground, whereas the dashed component serves as a reference to the sky. This 
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aspect of the display serves as a cue for the aircraft--ground relation.  Deviations of the aircraft 

from the optimal flight path result in movements of the rectangle relative to the fixed reference 

point. A deviation in altitude is represented by a vertical displacement of the rectangle. A 

deviation in heading is represented by rotation in the rectangle. The CFD HUD used the 

airspeed calculations employed in the standard interface.  

The candidate interface condition also contains a force-reflective haptic stick. The side-

stick controller was connected to a McFadden hydraulic control loader, which allowed numerous 

aspects of stick feel to be modified in real time. The force-reflective stick was programmed to 

provide a command input of sorts. A pilot who initiated inappropriate control inputs (those that 

would move the aircraft away from the optimal flight path) would receive haptic feedback in the 

form of increased resistance. The analysis of different interface impact on the navigation task 

showed significant performance advantages in the quality of route navigation with the candidate 

and adaptive interfaces relative to the standard interface. No significant differences between the 

candidate and adaptive interfaces were found. 

 

2.2  Adaptive multi-sensory displays in simulated flight 
Tannen (2000) assessed the effectiveness of adaptive multi-sensory displays for aiding 

target acquisition in an operationally relevant simulated flight task. HUDs and helmet-mounted 

displays offer some advantages for target detection scenarios. However, their utility is often 

constrained by characteristics unique to these technologies (e.g., narrow field of view, limited 

resolution, additional helmet weight, etc.). Tannen et al. (2000) proposed to compensate these 

limitations by the integration of spatial audio cues with standard HUD and head-coupled, helmet-

mounted display symbology. The seven interfaces that were tested comprised combinations of 

adaptive and non-adaptive head-coupled visual and spatial audio displays designed to aid target 

acquisition. The visual cuing display consisted of a look-to-line and range indicator that was head 

coupled and projected onto the surface of the simulated flight environment.  

The spatial audio display consisted of pulsed, broadband noise, displayed over a set of 

headphones, which appeared to emanate from the direction of the target.  

In the non-adaptive cuing conditions, the visual and spatial audio cues were present 

throughout the entire flight trial whenever a target appeared in the field of regard. In contrast, in 

the adaptive conditions, the modality of the cuing interfaces was determined by the pilot’s head 

orientation. For example, the adaptive visual display was activated when targets were within 

±15º of the center of the pilot’s head orientation. Conversely, the adaptive spatial audio cue was 

initiated when targets were greater than ±15º from the pilot’s line of gaze.  The pilots were 

asked to acquire ground and air targets while they followed a prescribed flight path and 

maintained a set airspeed and altitude.  
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An analysis of target acquisition performance indicated that all multi-sensory interface 

configurations enhanced performance relative to the standard non-cued display and the non-

adaptive spatial auditory display. This effect was especially pronounced for ground targets. 

Moreover, multi-sensory displays, on average, were found to provide an 825-msec advantage 

over the non-adaptive visual cuing display for the designation of ground targets that were initially 

outside of the pilot’s line of gaze. The advantages of multi-sensory displays were also reflected in 

pilots’ overall ratings of perceived mental workload (National Aeronautics and Space 

Administration Task Load Index), which were found to be approximately 30 points lower than the 

standard non-cued and non-adaptive spatial audio displays. 

 

2.3  Adaptive pilot-airplane interface 
Mulgund and Zacharias (1996) presented an architecture of the adaptive pilot-airplane 

interface (PVI). The adaptive interface uses computational situation assessment models (based 

on Bayesian networks) and pilot workload metrics to drive the content, format, and modality of 

cockpit displays.  The main purpose of the PVI concept is to support a tactical pilot's situation 

awareness and decision-making. The content, format, and modality of the adaptive pilot/vehicle 

interface are controlled by PVI control module. The overall architecture of adaptive interface is 

presented in Figure 1.  PVI control module is driven by two key information streams:  1) the 

content path, driven by a tactical situation assessment module that uses avionics system outputs 

and the pilot's information needs; and 2) the format path, which uses an estimate of the pilot's 

state (workload level, attentional focus, etc.) to determine the most appropriate content, modality 

and format for conveying the required information to the pilot.  

6 



   
 

 
Figure 1 - Functional diagram of Situation-Driven Adaptive Interface (modified after Mulgund and 
Zacharias,1996).  
 
 
The content path is based on the Crew/System Integration Model – that is integrated model of the 

air crew situation assessment and decision-making that has been using for the fighter attack 

mission and air superiority modeling (Mulgund, 1996). The content path consists of following 

stages:  

1)  Information processor module  includes the following two elements: 1) the  

 continuous state estimator that uses avionics system outputs to generate  

 estimates of the  aircraft's tactical situation (velocities, position, attitude,  

 subsystems state, and states of the targets and threats); 2)  discrete event  

 detector that generates occurrence probabilities of mission relevant events  

 (system failure, request for action, mission0related millstone)  

2)  Situation assessor block uses the estimated states and detected events to  

 generates an assessed situation (S), which is a multidimensional vector defining  

 the occurrence  probabilities of the possible tactical situations that face the pilot.  
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 A fixed and predefined set of situations is assumed, determined only by the  

 mission relevancy. The situation assessor relies on Bayesian networks  

3)  Information filtering module: uses the given situation (S) to filtering the  

 information stream to determine what information must be presented to the pilot  

 to support his/her situation awareness (SA) and procedure execution. Filtering  

 strategy relies on the hierarchy of the events, goals, and situations and a  

 prioritization of information in relation to these (Endsley, 1992). The output of the  

 module is the specification of the information presented to the pilot.   

 

The format path consisting of following two stages: 1) the workload estimator, 2) The  

display configuration and adaptation strategy. The workload estimator includes:   

a) Physiological processing system that uses such indices as: pilot pulse, respiration rate, 

eye blink rate, eye line of sight (HMD- mounted eye tracker), and EEG to compute 

physiological correlates of pilot workload.   

b) Subjective and performance-based workload model, which provides the additional 

workload measures form off-line subjective evaluations and performance based 

assessment techniques. The individual on-line measures are fused together to aggregate 

indicators of pilot states  

The display configuration and adaptation strategy (DCAS) uses the pilot state indicators and the 

pilot information requirements to determine how to configure the PVI displays. Implementation of 

the DCAS in the form of an expert system will use two principal knowledge bases (KB):  

a) Display configuration KB contains the specifications of all normal display modes, formats 

and contents. The KB defines the baseline no-adaptive PVI, that may be manipulated by 

pilot by switches.  

b) Human performance model KB contains model based on the principles of the human 

perceptual, cognitive, and response capabilities. This model provides a rule-based 

guidance how to adapt the PVI to a given situation. The output will appear on the head-

down, head-up or helmet mounted displays. Auditory cueing could take form of 

synthesized speech alerts, warning tones, or 3-D localized sounds.  
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2.4  Adaptive interface for terrain navigation 
Baus et al. (2002) developed hybrid navigation system that adapts the presentation of 

route directions to different output devices and modalities. The system takes into account the 

varying accuracy of positional information according to the technical resources available in the 

current situation. This system also adapts the information presentation to the limitation of user 

cognitive resources.  This resource-adaptive navigation system (project REAL) consists of three 

major components. First, an information booth that consists of a 3Dgraphics workstation, where a 

virtual walk-through through the environment is shown by a virtual presenter, uses 

complementary spatial utterances and meta-graphics. Second, an indoor navigation system has 

been build based on strong infrared transmitters mounted at the ceiling and small PDAs as 

presentation devices. These are used to display simple sketches of the environment received via 

infrared method. The third component is an outdoor navigation system that uses a small laptop in 

combination with a head mounted display. A GPS system determines the user’s actual position 

and an electronic compass tracks the user's orientation.  

A single 3Dmodel of the environment is used to produce walkthroughs at the information 

booth and sketches for the mobile use. Adaptation services include the choice of camera 

perspective and path as well as the decision to include landmarks and interactive areas in the 

graphics. The REAL system tailors the presentations to a variety of technical limitations. Besides 

the size, resolution and color capability of the display, the system takes into account the 

computational power of the used device (information booth, PDA, and wearable computer). A 

specialty of REAL is the ability to integrate two different approaches to location sensitivity: active 

and passive location sensitivity. The system considers a variety of parameters that affect the 

cognitive resources, i.e. the walking speed, spatial familiarity and time pressure. For the 

navigation in buildings the IRREAL subcomponent was developed. IRREAL transmits interactive 

texts and graphics, very much like hypertext documents. This enables the user to interact with the 

presentation, although there is no bi-directional connection. The generated presentations are 

arranged in a presentation tree consisting of nodes, which may contain texts or graphics.  

Through the use of transmission probabilities assigned to the different parts of a 

presentation tree it is possible to adapt the presentation to the user’s walking speed. If the user 

stays in a transmission area for a short time the device will receive only the information with 

high priority, e.g., graphical walking directions. The more time the user spends in a transmitting 

area more complex the information about the environment will become available. In the 

ARREAL project a navigation system for pedestrians in an outdoor scenario was developed. 

ARREAL consists of four components: A sub-notebook, used for the relevant computations. For 

graphical or textual output a special clip-on for glasses is used. The users’ position and 

orientation in the environment is determined through the use of a small GPS and a magnetic 

tracker. The magnetic tracker was modified and equipped with two additional buttons, so that it 
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can be used to interact with the system analogously to a standard two-button computer mouse. 

The modified tracker is used as a 3Dpointing device, e.g., the user can retrieve additional 

information by pointing on a building. On the small clip-on display (640x320 Pixel) sketch-like 

graphics are shown from birds-eye- or egocentric-perspective.  

Overview maps are used to visualize the user's current position in the environment. 

Graphics from the ego-perspective view are used to present more detailed information about the 

environment, e.g., information about buildings in the current line of sight. In addition the system 

supports different levels of detail in the visualization. The system is able to visualize different 

portions of a map while changing from an overview to a detailed view of the environment. On the 

other hand textual or graphical annotations can be inserted, such as the names of streets or 

buildings. Navigational instructions are given by means of arrows that indicate turns to the user.  

System chooses between two modes: a birds-eye and ego-perspective. The ego-perspective is 

chosen when the system has adequate positional and orientational information. In cases were 

positional and orientational information is of inferior quality, ARREAL prefers the birds-eye 

perspective to the ego perspective.  If bird’s eye-perspective is chosen, the precision of the 

positional information is encoded by the gray dots, resulting in a close-up of that area of the 

building. But in order to align the map to the walking direction, the system has to ensure the users 

correct orientation. The system also takes into account the user's current walking speed. If user 

moves fast, the system presents a greater portion of the map in order to help the user in 

orientation and at the same time to reduce the amount of information about buildings at the edges 

of the display. Since textual annotations at the edges of the display serve as menu items, the 

system reduces also the possibility to interact with the system. 
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3.  ADAPTIVE INTERFACE FOR SUBMARINE SYSTEMS 
Soulard (1992) presented an adaptive interface for submarine warfare system SAITeR 

(Séquencement d'Activités Intelligent en Temps Réel, i.e. Intelligent Process Scheduling). This 

application was designed and developed at the Advanced Research Department of TS.ASM 

Arcueil. SAITeR automatically performs a complete scheduling of the Target Motion Analysis 

(TMA). Each task runs a specific data processing algorithm whose triggering depends on 

operational and technical context evolution. SAITeR consists of two parts:   

1)  An automatic part (A) triggers algorithms depending on the operational context  

 (township maneuvers, detected vessel maneuvers, the source of detection  

 (mono- or multi-sensors detection, new contact or loss of detection), and results  

 of the last algorithms.  

2)  A manual part (M) enables the human operator to trigger interactively particular  

 algorithms on a small number of vessels in case of bad results from the  

 automatic part (A).  

 

The SAITeR controls the amount of information displayed. Analysis of the (A) part screen load 

(number of vessels and delay of presence) can lead to reduction of information displayed (e.g. 

the most threatened vessels or the vessels processed by the (M) part will be displayed). 

Moreover, the system reinitializes and updates the operator model by continuous analysis of 

human activities. The system takes into consideration some operator habits during performance 

of particular tasks. These individual human characteristics can be stored by the system in an 

operator model as yielding for simplification of the task.  

Soulard (1992) suggested a diversification of interaction media to reduce visual 

information overload and improve human operator performance. The multimodal interface 

composed of following elements were proposed: 1) a touch entry screen (in place of some 

buttons), 2) a voice input to keep eyes on the screen during some commands, and 3) the 

speech synthesis under certain conditions, such as the use of headphone to reduce the 

ambient noise or the use of short messages. The generic architecture of adaptive interface is 

composed of three main modules:   
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1)  Media Management Module that formats the events arriving from the different  

 media or devices.  

2)  Multimodal Request Understanding Module that manages the multimodal request  

 from the operator. Based on a linguistic and semantic analysis of the formatted  

 events from the media manager, this module provides requests that are  

 syntactically and semantically correct to the upper module.   

3)  Dialog Understanding Module that controls the dialog consistency i.e. when the  

 operator makes a multimodal request of: 1) finding the current task of the  

 operator, 2) dynamic updating of the task model, the operator model and the  

 interactions history by analyzing the interactions, and 3) managing the strategy of  

 the system and at anticipating the further task.  

 

4.  ACTIVE USER COLLABORATIVE INTERFACES 

4.1  Adaptive interface for control of mental workload  
Saiwaki (1996) described the adaptive interface that controls the level of the mental task 

difficulty according to the user’s mental condition. The system measures and analyzes several 

physiological indices of the user completing the audio-visual mental task presented on the 

display. Than, it deduces the concentration and emotional tension level of the user, based on the 

extracted specific features of the physiological indices. Finally, the system adjusts the control 

parameters of the task to the user concentration and tension level. The system is composed of 3 

stages:  

1) EEG, ECG, and changing rate of SPR, are measured as original biological signals and 

physiological indices are extracted by biological signal processing. The following indices 

are used: heart rate (HR), and respiratory sinus arrhythmia (RSA); changing rate of SPR; 

distribution of EEG’s peak frequency. 2) The level of emotional tension and concentration 

of the user are estimated from indices. The system learns the relations between user’s 

mental conditions and the indices by pre-experiments in advance. The neural network is 

utilized for learning of these relations. 3) Mental task is controlled on the basis of the 

concentration and tension level assessed in the previous stage. The level of task is 

changed by adaptation of control parameters of the task, the picture size, color, moving 

speed, and sound tone. 
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4.2  Active user-interface paradigm 
Brown and Santos (1999) developed an active user interface for PESKI system.  The 

PESKI system (Probabilities, Expert Systems, Knowledge, and Inference) is an integrated 

probabilistic knowledge-based expert system development environment utilizing Bayesian 

Knowledge-Bases as its knowledge representation.  PESKI provides users with engineering 

agents for knowledge acquisition, verification and validation, data mining, and inference, each 

capable of operating in various communication modes to the user. Authors claimed that active 

user interfaces serve as actuators in the human-machine interface, and allow the user to interact 

with the computer in a naturalistic/symbiotic manner. The active interfaces are capable of multi-

levels of collaboration and autonomy. The user of an active user interface is fully aware of any 

actions, whether explicit (authorized consent) or implicit (implied consent), taken by the interface 

and has a complete, intuitive understanding of such actions. Brown and Santos (1999) developed 

for PESKI system intelligent knowledge engineering tools (agents) and integrated them using the 

active user interfaces paradigm.  

PESKI consists of four major components (see Figure 2 or PESKI 

architecture):  

. • Intelligent Interface Agent: translates English questions into inference queries 

and translates the analyses/inference results back into English, ; allowing intelligent 

communication exchange between the user and the system;  Inference Engine ; includes 

intelligent strategies for controlling the selection and application of various inference engine 

algorithms (e.g. A*, 0), integer linear programming  (ILP), genetic algorithms  (GAs) to obtain 

conclusions to user queries,  

• Explanation & Interpretation module; keeps track of the reasoning paths the 

inference engine; allows the user to query the system about how and why 

an answer was derived.  

• Knowledge Acquisition & Maintenance; automatically incorporates new or 

updated expert knowledge into the knowledge base.  

 

The active user interfaces paradigm was used to organize the PESKI into three 

subsystems. The four above components serve multiple functions and each PESKI 

subsystem combines different components together for that subsystem. The User Interface 

is composed of the Intelligent Interface and the Explanation & Interpretation components, 

as well as the interface components for the various engineering agents. The Knowledge 

Organization & Validation consists of the Explanation and Interpretation component along 

with the human expert and knowledge engineering tools.   
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Figure 2 – PESKI Architecture (after Santos, 1999) 
 
 
Organization is accomplished by communicating with the Knowledge Acquisition & Maintenance 

component, ensuring compliance with the BKB consistency constraints. The Reasoning 

Mechanism consists of the Inference Engine and the Knowledge Acquisition & Maintenance 

components.  Assistance was provided by developing and maintaining cognitive model of the 

user. The user model captures the goals and needs of the user within the PESKI environment, as 

well as possible system events that occur, within a probabilistic representation/model of the 

PESKI environment. The interface agent determines the how, when, what, and why to offer 

assistance to the user.  The agent is capable of offering assistance for such goals as which agent 

to use to correct a BKB consistency constraint violation as well as suggesting the user preferred 

communication mode for a given agent.   

The Knowledge Acquisition & Verification is achieved through the MACK agent, who 

automatically and incrementally confirm consistency of the knowledge elicited from the expert and 

provides assistance by identifying the source of any inconsistency and proactively suggesting 

corrections.  Regular incremental checks preserve both probabilistic validity and logical 

consistency as knowledge is acquired presumably under the expert’s current consideration. 

PESKI’s validation is performed using two agents - BVAL and GIT. BVAL validates a knowledge 

base against its requirements using a test case-based approach.  Under certain conditions, the 

14 



   
 

knowledge base is corrected automatically via reinforcement learning of the probabilities. The 

graphical incompleteness tool (GIT) is used to visualize the knowledge base incompleteness for 

the user and actively provides solutions to correct it.  The agent uses data visualization of the 

BKB and guides the user via color-coded shadings on how to repair the problem. The Inference 

Engine uses a performance metric-based approach to intelligently control a number of possible 

anytime and anywhere inferencing algorithms (e.g., A*, genetic algorithms). The control is specific 

to the given knowledge base and test case provided by the expert. Results are returned to the 

user via the Explanation & Interpretation subsystem of PESKI as they become available. 

 

5.  BRAIN-BASED ADAPTIVE COMPUTER INTERFACES 

5.1  Asynchronous Adaptive Brain Interface 
Millán and Mouri no (2003) developed an asynchronous Adaptive Brain Interface in which 

the subject makes self-paced decisions concerning switching from one mental task to another. 

This portable Adaptive Brain Interface (ABI) is based on the on-line analysis of spontaneous 

electroencephalogram (EEG) signals measured with eight scalp electrodes and able to recognize 

three mental tasks. This approach relies on an asynchronous protocol where the subject decides 

voluntarily when to switch between mental tasks. The simple local neural classifier is used to 

recognize (every 0.5 s) the mental task on which the subject is concentrating. ABI was used to 

operate two brain-actuated devices: a virtual keyboard and a mobile robot (emulating a motorized 

wheelchair).  

The brain computer interface (BCI) is based on the analysis of EEG signals associated 

with spontaneous mental activity. The analysis is concerned with local variations of EEG over 

several cortical areas that are related to different cognitive mental tasks such as imagination of 

movements, arithmetic operations, or language. The EEG patterns embedded in the continuous 

EEG signal and associated with different mental states was determined.  The machine-learning 

techniques were used to train the classifier and follow a mutual learning process where the user 

and the brain interface are coupled and adapt to each other. This accelerates the training 

process. In the presence of feedback, subjects achieved good performance in just a few hours of 

training. ABI has a simple local neural classifier where every unit represents a prototype of one of 

the mental tasks to be recognized.  

It was found that this local network performs better than more sophisticated approaches 

such as support vector machines and temporal-processing neural networks (TDNN and Elman-

like). This performance was achieved by averaging the outputs of the network for eight 

consecutive EEG samples (and still yielding a global response every  

0.5 s). Once trained, the response of the network for the arriving EEG sample is the task with the 

highest posterior probability, provided that it is above a given probability confidence threshold 
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(otherwise the response is classified as “unknown”). The posterior probability distribution is based 

on the Mahalanobis distance from the EEG sample to the different prototypes.  

Several demonstrations were developed to illustrate the wide range of systems that can 

be linked to ABI. The brain interface can be used to select letters from a virtual keyboard on a 

computer screen and to write a message. Initially, the whole keyboard (26 English letters plus the 

space to separate words, for a total of 27 symbols organized in a matrix of three rows by nine 

columns) is divided in three blocks, each associated to one of the mental tasks. The association 

between blocks and mental tasks is indicated by the same colors as during the training phase. 

Each block contains an equal number of symbols, namely nine at this first level (three rows by 

three columns). Then, once the neural classifier recognizes the block on which the subject is 

concentrating, this block is split in three smaller blocks, each having three symbols this time (one 

row). As one of these second-level blocks is selected (the neural classifier recognizes the 

corresponding mental task), it is again split in three parts. At this third and final level, each block 

contains one single symbol. Finally, to select the desired symbol, the user concentrates in its 

associated mental task as indicated by the color of the symbol. This symbol goes to the message 

and the whole process starts over again. Thus, the process of writing a single letter requires three 

decision steps.  

The EEG potentials were recorded at the eight standard fronto-centro-parietal locations: 

F3, F4, C3, Cz, C4, P3, Pz, and P4. The sampling rate is 128 Hz. The raw EEG potentials are 

first transformed by means of a surface Laplacian  (SL) computed globally by means of a 

spherical spline of order.   Then the Welch periodogram algorithms were used to estimate the 

power spectrum of each SL-transformed channel over the last second. EEG sample had 96 

features (8 channels x 12 components each).  

 

5.2  EEG-based interfaces 
Pope, Bogart, and Bartolome (1995) examined the utility of EEG for adaptive automation 

technology. These researchers developed an adaptive system that uses a closed-loop procedure 

to adjust the mode of automation based on changes in the operator's EEG patterns. The closed-

loop method was developed to determine optimal task allocation using an EEG-based index of 

engagement or arousal. The system uses a bio-cybernetic loop that is formed by changing levels 

of automation in response to changes in mental workload demands. Thus, an inverse relation 

exists between the level of automation in the tasks and the level of operator workload.  The level 

of automation in the task set could be such that all, none, or a subset of the tasks could be 

automated. The task mix is modified in real time according to the operator's level of engagement. 

The system assigns additional tasks to the operator when the EEG reflects a reduction in task 

engagement. On the other hand, when the EEG indicates an increase in mental workload, a task 
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or set of tasks may be automated, reducing the demands on the operator. Thus, the feedback 

system should not reach a steady-state condition in which neither sustained rises nor sustained 

declines in the EEG are observed.  

In this study participants performed the compensatory tracking task of the Multiple-

Attribute Task (MAT) Battery. The MAT Battery primary display is composed of four separate task 

areas or windows, comprising the monitoring, tracking, communication and resource-

management tasks. Each of these tasks in the MAT set is designed to be analogous to a task that 

crewmembers perform in flight management and each can be made either manual (subject must 

manage task) or automated (computer manages task). In the version of the MAT developed for 

these studies, the monitoring, communication and resource-management tasks remained in 

automatic mode, and the compensatory tracking task was performed by the subject when in 

manual mode and only monitored by the subject when in automatic mode. Pope et al. (1995) 

reported that three indexes--beta/alpha, beta/(alpha plus them), and alpha/alpha--were able to 

distinguish between the feedback conditions, but the best discriminator was the index, 

beta/(alpha plus theta).   

Prinzel et al.. (2000) developed a closed-loop, biocybernetic system to test various 

psychophysiological measures for their use in adaptive automation. Specifically, were assessed 

the use of the EEG band ratio, beta/(alpha plus them) on the basis of behavioral, system, and 

physiological data gathered under negative and positive feedback controls. Furthermore, the 

study was designed to determine how different task loads impact adaptive task allocation and 

system regulation of task engagement and workload. Participants operated a modified version of 

the MAT Battery. The MAT Battery is composed of four separate task areas, or windows, 

constituting the monitoring, compensatory tracking, communication, and resource management 

tasks. These different tasks were designed to simulate activities that airplane crewmembers often 

perform during flight. Only the monitoring, compensatory tracking, and resource management 

tasks were used for this study. The functioning of the monitoring and resource management tasks 

was controlled by a script file that controlled the sequence and timing of the events in the tasks. 

The compensatory tracking task was cycled between manual and automatic modes  

Tracking performance was found to be significantly better under the negative 

feedback condition than under the positive feedback condition. These results suggest that the 

closed-loop system can facilitate performance and complements the task allocation and 

psychophysiological data supporting the use of the system for adaptive task allocation. The 

results showed that more task allocations were made under the multiple task condition. 

Therefore, the system appears to be sensitive to increases in task load. Participants also 

rated workload higher and performed the tracking task more poorly under the high workload 

condition. The EEG engagement index, however, was not found to discriminate between 

these two task conditions, although the value of the index was higher under the multiple task 
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condition than under the single task condition. Nevertheless, these results support that the 

single and multiple task conditions provided different levels of task load.   

5.3  Interfaces with on-line self adaptivity 
Vico et al. (2001) proposed to achieve the on-line self-adaptivity of the human-computer 

interfaces by implementation of the basic principles of classical behavior conditioning to the 

neural networks. This type of interface adapts without any a priori information of their interaction 

with the user.  The prototype adaptive interface was developed to demonstrate the applicability of 

this learning technique to the adaptation of user interfaces. Classical conditioning deals with 

unconditioned stimulus (UCS) that automatically elicits an unconditioned response (UCR). If 

some given conditioned stimuli (CS) precede another UCS that elicits a concrete response, this 

CS will be associated with the UCR. This CS–UCS relation transforms in a conditioned responses 

(CR) that involves the specific generation of the UCR by the CS. The Sutton and Barto (SB 

model) model of the classical conditioning (that considers the temporal appearance of the UCS 

and CS) were implemented to the neural networks. 

 

Figure 3 - Basic neural network architecture for the SB model (after Vico et al. 2001).  
 
Adjustment of the synaptic weights between neurons was made in an incremental learning 

fashion. This adjustment is done according to the following rule:  

iij xyyW )( −=∆ α  
 
With  

=ijW synaptic weight(or association level between stimuli and response) 

=ix  temporal trace of the CS 
=y response level(UCR or CR) 
=y  trace of the response 
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Both traces implement a short-term memory of recent activation levels, and are 

computed according to the following equations:   
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Where  represents the over time CS,  is the response level at time t, and )(tx )(ty β  
and λ  are constants related to the size of the temporal integration window.    

 
 

The model works by increasing a weight when a CS comes before the arrival of the UCS 

and decreasing it if the predicted UCS does not arrive. In order to avoid recurrent self-

connections and overall inhibitions, the CS is `artificially' maintained up to the arrival of the UCS 

to get the memory traces necessary for associating both stimuli. The neural circuit shown in Fig. 4 

constitutes the building block of a network that learns temporal relations between stimuli and 

responses. The particular architecture of the network must account for all the input–output 

relations that might be present in the interface behavior.   

The implemented prototype is windows-based application that allows the user to build 

sentences from limited sets of words. These words are grouped in three different classes: 

pronouns, verbs, and objects, and can be extracted from menus that can be opened up by 

clicking on the button labeled with the corresponding class identifier. Finally, the `OK' button 

restarts the system, allowing a new sentence to be typed. The structure of the neural system 

used in the adaptive interface is presented in Fig. 4.  The basic circuit of Fig.3 is expanded to 

implement all possible combinations of events and actions. This two-layer network has an input 

layer that stores the user-generated events and an output layer that produces actions. After the 

group of user feed the system a set of events can be grouped, according to their nature. Two 

classes of events sets were obtained: user's commands (environmental stimuli perceived by the 

interface) and internal actions (interface's responses) that have precise consequences on the 

computer system.  
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Figure 4 – Overall network architecture (Vico, 2001).  User’s commands and internal actions 

The command–action relations are represented by UCS–UCR excitatory connections 

(positive weights). Stimuli arrive to the network from the left, generating responses through the 

excitatory rigid connections represented by small solid circles. The model neuron is defined as a 

summation of incoming activity. A neuron remains in a resting state (output to 0) if there is not 

enough activity to activate it, and outputs a maximum value (1) when overall activity exceeds the 

threshold. Rigid excitatory connections are adjusted in such a way that the activation of the pre-

synaptic neuron is able to elicit a post-synaptic response. As the user enters sentences, the 

interface trains itself, and some connections start changing their initial values. At some point, the 

interface starts eliciting CRs (anticipating user's commands). This unexpected behavior might or 

might not fit with the user's interests. The sequence of actions that follows a CR tells the system 

whether this command was or not appropriate: if the user feeds an event that keeps the expected 

sequence on the track then the acquisition is effective, and in the future this event will be 

automatically generated by the interface while the sequence remains valid. If, instead, the user is 

forced to go back, giving actions that break the expected sequence of commands, then the 

interface has to reconsider its CR, extinguishing this behavior in the future.  

This interaction between the user and the interface takes, as a consequence, the initial 

random configuration of the network to a stable state where the interface performs the predictions 

and elicits adequate actions to facilitate the task. This behavior will be stable as long as the user's 

commands always follow the same series. If the user changes the sequence, then the interface is 
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taken to a different state where some previous actions are extinguished and some new skills are 

learnt.  This interface can be upgraded to a sort of adaptive system that predicts the arrival of a 

user's commands and, furthermore, performs appropriate actions that speed up the interaction 

between the user and the interface.  

The main difference between the proposed approach and traditional methods is that 

the neural network by itself rules the way the interface operates. While most intelligent skills 

are pre-included in the user interface, the network introduces non-modifiable connections to 

implement the pre-wired reactions (the interface itself) and modifiable connections that account 

for all possible associations among user actions and interface behavior. Initially, this method 

applies to non-modal interfaces, in which system response to one event depends only upon 

the event. However, the learning mechanism underlying this technique converts the original 

non-modal interface in a modal interface where the system response to one event is related to 

previous event by means of the memory traces stored in synaptic weights of the neural 

network. 

 

 

 

 

 

6.  INTERFACES FOR ADAPTIVE CONTROL SYSTEMS 
Adaptive control is an active and diverse research area with many different applications. 

An adaptive control system can be defined as a feedback control system intelligent enough to 

adjust its characteristics in a changing environment so as to operate in an optimal manner 

according to some specified criteria (Wahi et al., 2001). Review of literature shows that adaptive 

control systems have achieved great success in aircraft, missile, and spacecraft, and process 

control applications. Applications of adaptive control can be broadly divided into application of 

classical and intelligent control techniques. This literature review focuses on the intelligent control 

techniques that combine and extend theories and methods mainly from artificial intelligent area 

such as, neural networks, fuzzy logic, and evolutionary programming. These computing 

techniques are used individually or in combinations.  

6.1  Fuzzy Logic Applications 
This section discusses recent application of fuzzy logic in adaptive control 

systems in aircraft, and system and process related control applications.  

Fuzzy logic based fight control system   
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Zhou et al. (1997) proposed for a fuzzy logic based fight control system for a hypersonic 

transporter in order to provide the longitudinal stability in the hypersonic region and to improve 

the response of the vehicle as well as to make the response exactly follow the commands. 

Fourteen fuzzy inference rules were used to model human operator behavior and max-min 

composition algorithm was used in the inference model. The model was used at four flight points 

of the flight envelope.  The evaluation included of the following: 1) response to the hypersonic 

transporter with the fuzzy logic controller to an initial disturbance of the angle of attack in the 

hypersonic region, in which the vehicle without the fuzzy logic controller was dynamically 

unstable, 2) comparison of the fuzzy logic controller with a conventional stability augmentation 

system, and 3) robustness of the fuzzy logic controller to flight condition variation. Figures 5.1.1.1 

and 2 shows general construction of a fuzzy logic controller and functional block diagram of FLC 

of the hypersonic aircraft  

 

Figure 5 - General construction of a fuzzy logic controller (after Zhou et al. 1997) 

The results showed that the fuzzy logic controller had the ability to stabilize the vehicle in the 

hypersonic region, and was fairly robust across the flight envelope. The authors also found that 

the fuzzy logic controller may be more capable than the conventional stability augmentation 

system.  

 

Figure 6 - Functional block diagram of fuzzy logic controller for hypersonic aircraft (after Zhou et 

al. 1997).
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Multiple fuzzy controllers for flight control systems  

Schram et al. (1997), in their study, implemented multiple fuzzy controllers for anticipating 

failure of flight control systems using a fuzzy logic expert system. In this study, the rule-based 

system was used as outer loop controller and additional supervisory rules were defined in case of 

failures. These ascertained the achievement of smooth and fast switching between different 

control modes in the same framework. Using fuzzy sets and fuzzy logic operations, the study 

designed a fuzzy reasoning system that acted as a controller. Figure 7 shows the structure of a 

typical fuzzy logic controller.  

The control strategy was stored in the form of IF-THEN rules in the rule base. These 

rules represented a static mapping from inputs (measurements) to outputs (control actions). 

Dynamic filters were used to introduce dynamics (error and derivative of error) and integration 

of the output. The membership functions provided a smooth interface to the numerical process 

variables. The fuzzification module determined the membership degree of the antecedent fuzzy 

sets. The inference mechanism combined this information with the rule base and determined 

the output of the rule-based system. In order to obtain a non-fuzzy signal, the output in the form 

of a fuzzy set was defuzzified. The aggregation and defuzzification phase were then combined 

in one step by the weighted fuzzy-mean method.  

 

Figure 7 - Block diagram of the fuzzy logic controller (after Schram et al. 1997) 

 

Flight control and mission planning for unmanned aerial vehicles  

Vachtsevanos et al. (1997) proposed a hybrid hardware-software platform to support 

flight control and mission planning algorithms for an autonomous unmanned aerial vehicle. The 

objectives of the project were to demonstrate automation technologies for vertical takeoff and 
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landing and to develop an integrated product and process development. The autonomous 

unmanned vehicle configuration consisted of a mission planner that included a supervisory 

controller and fuzzy route planner, fault tolerance, and navigator. The configuration also used a 

fuzzy flight controller that used phase portrait assignment algorithm. This algorithm is capable 

to utilize experimental data or simple nonlinear system models and heuristic evidence to arrive 

at the phase plane or phase space representation. Figure 8 shows the ASRT configuration  

 

Figure 8 - The ASRT configuration (after Vachtsevanos et al. 1997). 

In this ASRT model, the high-level supervisory controller provided the start and destination points 

to the route planner. The route planner’s task was to generate the ‘best’ route in the form of 

waypoints for the helicopter to follow. It used a modified A* search algorithm that minimized a 

suitable cost function consisting of the weighted sum of distance, hazard, and maneuverability 

measures. The cost elements were expressed as fuzzy membership functions. Figure 9 shows 

the flowchart of the route planner. A fuzzy navigator was designed to command the helicopter in 

the navigation mode. The  

Adaptive human-computer interfaces vehicle followed a series of waypoints in a intelligent 

manner in order to achieve the best compromise between waypoint spatial compliance and 

energy management.  
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Figure 9 - Flow chart of the route planner (after Vachtsevanos et al. 1997). 

 
The model also consisted of a fuzzy fault tolerance module where critical sensor or component 

failure modes were stored in a fuzzy rule base as templates. Real time sensor data were then 

fuzzified and an inference engine was employed to compare the incoming signals with the stored 

information. In the model, the failure detection and identification architecture entailed both online 

and offline learning algorithms and also means to associate a degree of certainty to the decision 

making process. The ASTR model consisted of a fuzzy flight controller that utilized phase portrait 

assignment algorithm (PPAA). Preliminary results showed that introduction of fuzzy logic based 

algorithms for the flight control and mission planning, in conjunction with other decision support 

tools, offers promise that such autonomous vehicles can accomplish a true mission. The authors, 

however, emphasized for further studies in order to achieve real autonomy in terms of intelligent 

attributes-adaptation, learning and fault-tolerance. 

 

Virtual sensors in flight control systems  

Oosterom and Babuska (2000) developed and implemented a virtual sensor for normal 
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acceleration in flight control system that was used in a small commercial aircraft. The 

consolidated outputs of dissimilar sensor signals were used as the inputs of the virtual sensors. 

The application of virtual sensors in flight control systems makes it possible to distinguish 

between two real sensors in the case of a failure and therefore either increase the safety of the 

system or reduce the cost of the system. A Takagi-Sugeno (TS) type fuzzy model was utilized for 

this purpose. The results showed that variance accounted for (VAF) index was higher in TS 

model compared to the linear model and that root mean squared error was less in TS model 

compared to the linear model. The authors proposed for future studies to investigate the 

robustness of the virtual sensors with respect to variations in the aircraft weight and the center of 

gravity and also in ‘pilot in the loop’ simulations.  

Virtual flight data recorder  

Napolitano et al. (1999) utilized neural network and fuzzy logic for the development of a virtual 

flight data recorder on commercial airliners. In their study, a neural network simulator (NNS) was 

used to predict the aircraft control surface deflections by using neural network or fuzzy logic 

reconstructor (NNR or FLR). Figure 10 shows the block diagram of the model.  

 
NNR = Neural Network Reconstructor 

NNS = Neural Network simulator  

FDR = Flight Data Recorder  

Figure 10 - Block diagram of the virtual flight data recorder (after Napolitano et al. 1999).  
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The NNS was trained off-line, using available flight data for the particular aircraft. Then 

the NNS was interface with the NNR or FLR. The outputs of the two reconstructors are the control 

surface deflections that minimize a performance index based on the differences between the 

available data from the flight data recorder and the output from the NNS. The results for the study 

showed that both schemes provide accurate reconstructions of the control surface deflections 

time histories. 

 

Intelligent flight support system  

Burdun and Parfentyev (1999) investigated the problem of intelligent flight support under 

complex operational conditions. In this study, a ‘chain reaction' mechanism of a flight accident 

was described. An affordable method of flight safety enhancement in advanced aircraft was 

suggested. The method employed the concept of a hybrid intelligent pilot model, which 

combined positive anthropomorphic and mathematical properties. A central component of this 

artificial intelligence model was a comprehensive knowledge base in the form of fuzzy situational 

tree-network (FSTN) of flight.  

A conceptual framework and some algorithmic issues of the method were discussed. 

Examples of FSTN prototyping were described in the article. Potential applications included 

an intelligent pilot-vehicle interface, automatic flight-envelope protection, autonomous 

(robotic) flight including multiple vehicle systems, resolution of conflicts in close free-flight air 

space, and others.  

 

Active control of aircraft dynamics  

Jeram and Prasad (2003) designed an active control system that alters the force-feel 

characteristics of a two active-axis-sidestick during adverse aircraft-pilot coupling (APC) events to 

provide a tactile avoidance cue. These events, also called Pilot Induced Oscillations (PIO), 

typically occur when the total aircraft dynamics unexpectedly deviate from the pilot’s expectations 

of control and response. This is often due to nonlinear effects such as rate limiting elements that 

make the aircraft dynamical response sluggish. In this study, a fuzzy logic based PIO detector 

was used to estimate the dominant frequency, phase lag, and actuator rate limit, and triggers a 

tactile avoidance cue that uses friction, radius of motion, and bobweight dynamics to 

communicate the dynamical nature of the aircraft that precipitates a PIO event. Preprocessing of 

PIO detection is shown in Figure 11. 

The PIO tactile avoidance cues presented in this study explored three new elements 

for carefree maneuver systems: 1) They apply to a controllability limit rather than a structural 

limit, 2) They use a logic based detector rather than an arithmetic cue detector, and 3) The 
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tactile interface uses radius of motion, friction, and force-feel dynamics rather than 

displacement based force cues.  

 

Figure 11 - Preprocessing of pilot induced oscillation (PIO) (after Jeram and Prasad, 2003). 

The study found that a unidirectional friction force up to 40% of the maximum static deflection 

force could provide an effective, intuitive tactile cue that the pilot’s stick movement exceeded 

some rate limitation within the total aircraft. This saturation cue was effective when there was a 

fundamental directional relationship between the rate limited element and the inceptor movement. 

However, the authors concluded that, It may not be appropriate for aircraft with unstable 

aerodynamics requiring multiple control surface actuator reversals during a maneuver. It was also 

found that the range of motion (RoM) cue was marginally useful. It can help control PIO events, 

but it does so at the cost of reduced pilot control authority. Also, some variations of this cue, 

where force gradient is altered, can produce objectionable interference with pilot commands. The 

authors suggested that similar PIO countermeasures may be implemented by the flight control 
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system without the use of active cues. 

On-Line Intelligent Processor for Situation Assessment  

Mulgund et al. (1997) assessed the feasibility of developing an concept prototype for an 

On-Line Intelligent Processor for Situation Assessment (OLIPSA), to serve as a central processor 

to manage sensors, drive decision-aids, and adapt pilot/vehicle interfaces in the next-generation 

military cockpit. The approach integrates several enabling technologies to perform the three 

essential functions of real-time situation assessment: 1) Event detection uses a fuzzy logic 

processor and an event rule base to transform fused sensor data into situational-relevance 

semantic variables, 2) Current situation assessment is performed using a belief network (BN) 

model to combine detected events into a holistic “picture” of the current situation, for probabilistic 

reasoning in the presence of uncertainty, and 3) Future situation prediction is carried out via 

case-based reasoning, to project the current situation into the future via experience-based 

outcome prediction. OLIPSA’s performance was demonstrated initially in the defensive reaction 

portion of an air-to-ground attack mission, in which a pilot must deal with an attack from threat 

aircraft. Situation awareness models were developed to support the pilot’s assessment of the 

threat posed by detected aircraft. 

 

Conflict free flight path guidance system  

Rong (2002) developed an agent-based hierarchical system that attempts to provide 

optimal and conflict free flight path guidance in situations where more than one type of conflict 

existed. An intelligent executive guidance agent, acting as a high-level arbitrator, received 

guidance information from lower-level weather agent and traffic agents. Figure 12 shows the 

overall architecture for agent based hierarchical system.  
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Figure 12 - Overall architecture of the agent based hierarchical system (after Rong (2002).  

When the flight path guidance from the two agents conflicted, the executive agent 

arbitrated by considering the spatial and temporal characteristics of the conflicting guidance. It 

classified them as either tactical or strategic in nature, and then prioritized them according to a 

pre-defined rule base of conflict priorities.  The arbitration function thus acted as a fuzzy 

controller, and gradually switched the guidance between the weather agent and traffic agent, 

providing conflict free flight path guidance, as the aircraft flied in and out of dangerous regions.  

Results of test cases presented in the paper demonstrated that the approach and algorithm could 

successfully resolve combined weather and traffic conflicts.  

Intelligent and autonomous flight control system  

Wu et al. (2003) investigated on an intelligent and autonomous flight control system for 

an atmospheric re-entry vehicle based on fuzzy logic control and aerodynamic inversion 

computation. A common PD-Mamdani fuzzy logic controller was designed for all the five re-entry 

flight regions characterized by different actuator configurations. A linear transformation to the 

controller inputs was applied to tune the controller performance for different flight regions while 

using the same fuzzy rule base and inference engine. An autonomous actuator allocation 

algorithm was developed, based on the aerodynamic inversion computation, to cover all the five 

actuator configurations with the same fuzzy logic controller.  

Simulation tests were conducted to track both a benchmark trajectory and the nominal re-
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entry trajectory. Test results showed that both the thrusters and body surfaces were able to 

conduct their roles in appropriate flight regions along the nominal trajectory. Tracking errors and 

the actuator usage were both well within their appropriate acceptable ranges. However, the bank 

reversals in the early part of nominal trajectory were too demanding for the thrusters, which 

revealed that there was a mismatch between the trajectory computation and the vehicle control 

regarding the thruster settings. Compared to the NLDI control approach, the proposed approach 

provided a better tracking performance, while having advantages in autonomous actuator 

allocation to guarantee the availability of the commanded control moments, and in handling non-

linear actuator saturations (in both thrust and control flaps).   Appendix A summarizes the 

reviewed studies on utilization of fuzzy logic controllers.  

6.2  Neural network applications 
Neural networks are known for their capabilities to approximate nonlinear mappings to a 

high degree of accuracy. Recently, neural networks have been widely used in the control of 

systems of transportation and wide variety of technological systems. Appendix B summarizes the 

reviewed studies on neural network based controllers. 

Intelligent navigational aids  

Caldwell et al. (1998) developed a neural network based landing approach navigation 

aid. The navigation aid provides the pilot with turning rate information that is based only on a 

non-directional beacon ground radio station and an automatic direction  

Adaptive human-computer interfaces finder. Figure 13 shows the incorporation of phase 

identification algorithm into neural networks.  

 
Figure 13 - Neural network and phase identification (after Caldwell et al. 1998). 
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The neural network controller determines a landing approach based on a seven-phase typical 

non-directional beacon system. In each phase, a feed forward neural network with one hidden 

layer with three nodes for non-directional beacon landing was used. A back-propagation learning 

strategy was used to determine the weights of the network. Simulation of eight cases showed that 

neural networks trained on human control patterns can be used as landing approach navigation 

aid. 

 

Adaptive flight control system  

Napolitano et al. (1999), in their study, demonstrated the capabilities of hardware based 

online learning parallel neural networks featuring neural schemes for fault-tolerant capabilities in 

a flight control system. Two different fault-tolerant schemes were introduced. The first scheme 

provided sensor failure detection, identification, and accommodation (SFDIA) for different kinds of 

sensor failures within a flight control system while the second provided actuator failure detection, 

identification, and accommodation (AFDIA) for different actuator failures. Simulation showed that 

by means of lower and upper bounds of auto and cross correlation functions, the controller was 

able to integrate AFDIA and SFDIA schemes without degrading performance in terms of false 

alarm and incorrect failure identification. 

 

Near-optimal helicopter flight load synthesis  

In their study, Manry et al. (1999) used neural networks for near optimal helicopter flight 

load synthesis (FLS) that is the process of estimating mechanical loads during helicopter flight, 

using cockpit measurements. First, modular neural networks were used to develop statistical 

signal models of the cockpit measurements as a function of the loads. Then Cramer-Rao 

maximum a-posteriori bounds on the mean squared error were calculated. Finally, multilayer 

perceptrons (MLP) for FLS were designed and trained that approximately attained the bounds 

or optimal performance. The authors, following the simulation, concluded that further studies 

need to be done to size the inverse networks in order to produce better bounds and to 

determine the objectivity of mappings directly from the training data. 

 

A fault-tolerant flight controller design  

 Yan et al. (1999) applied minimal radial basis function neural networks called the 

Minimal Resource Allocation Neural Networks (MRAN) for fault-tolerant flight controller design. 

In their architecture, the MRANN controller aided the conventional controller.  

 The neural nets did not require off-line training and the scheme had good fault-tolerant 
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capabilities. The MRAN controller was illustrated for a fighter aircraft (F-8) longitudinal control 

in an autopilot mode for following velocity and pitch rate pilot commands under large parameter 

variations and sudden variations in actuator time constants. Results indicated that MRAN 

controller exhibited better performance than another feed forward inverse neural controller that 

used a gradient learning scheme. 

 

Adaptive flight control system   

Urnes et al. (2001), in their study, developed a damage adaptive flight control system that 

utilizes neural network technology to predict the stability and control parameters of the aircraft, 

and uses this data to continuously optimize the control system response. Figure 14 shows the 

block diagram of application of neural network by the IFCS design and the advanced flight 

controller to continuously optimize flight path response.  

 

Figure 14 - Application of neural network in IFCS design (after Urnes et al. 2001). 

The network design used a pre-trained neural network that may be combined with an 

additional self-learning neural network. This self-learning network would learn and process the 

incremental changes to the aircraft plant that may occur under failure or battle damage 

conditions. The neural network data was provided to an adaptive flight controller that continuously 

optimizes the control to compensate for damage or failure conditions of the aircraft. The system 

was implemented on fifteen flights of an F-15 with a test flight envelop with supersonic flight 

conditions. The system successfully provided continuous monitoring of off-nominal failure or 
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environment conditions, and immediate assistance to the flight crew and the vehicle control 

system to regain stable control of the vehicle. 

 

Flight sensor control system   

Campa et al. (2002) showed the results of the analysis of a scheme for sensor failure, 

detection, identification, and accommodation (SFDIA) using experimental flight data of a research 

aircraft model. The study was based on the use of neural networks (NNs) as online learning 

nonlinear approximators. The study compared the performances of two different neural 

architectures. The first one was based on a multi layer perceptrons (MLP) trained with the 

extended back propagation algorithm (EBPA). The second architecture was based on a radial 

basis function (RBF) trained with extended-MRAN (EMRAN) algorithms. The scheme had shown 

to be successful in the detection, isolation, and accommodation of failures ‘injected’ on a 1/24 

scale WVU B777 flight data. The mapping accuracy and the generalization capabilities of both 

classes of NNs had shown to be critical for the performance of the scheme. The comparison of 

the two architectures showed that RBF-EMRAN based scheme was slightly better than MLP-

EBPA based scheme. 

6.3  Application of genetic algorithms 
Air traffic planning  

Oussedik et al. (2000) presented a new air traffic routes generator based on genetic 

algorithms. Their objective of developing such route generator was to spread the traffic on new 

alternative routes due to the traffic growth and congestions in direct and near direct routes. This 

generator used the information of airspace beacons and sectors. The software generator 

resulting from the use of the genetic algorithms generated a set of alternative routes that differed 

from each other in several characteristics, such as geometrical matrices and crossed sectors, 

with reasonable extra distance compared with the direct route (with the minimum distance). The 

software generator also produced routes that avoid some congested sectors or restricted areas. 

 

A longitudinal flight controller  

Austin and Jacobs (2001) applied genetic algorithms to the design of a longitudinal 

flight controller for a hypersonic accelerator vehicle that is to be used to launch small satellites. 

The study examined the capacity of a genetic algorithm in designing a fuzzy logic controller for 

the task of closed loop flight control. The objective of the design task was to configure the 

control surface, along with a fixed and preset control structure, through selection of the rule 

consequents and input scaling. Figure 15 shows the closed loop attitude and trajectory control 

model for longitudinal flight. The angle-of-attack rule base contained 75 rules in this study.    
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Figure 15 - Closed loop attitude and trajectory control model (after Austin and Jacobs, 2001).  

The genetic algorithm uses a collection of simulated flight responses in its formulation of 

the objective function. This allowed the generation of a controller design without linearization of 

the vehicle model and dynamics. Stability augmentation was shown through flight simulation at 

the low-speed end of the hypersonic trajectory and also at a higher flight speed. Emphasis was 

given on further studies to formulate better guidance rules, minimize computation time, selection 

of initial conditions and the design objectives.  

Optimization of large-scale air combat tactics  

Mulgund et al. (1998) in their study developed a software tool for optimizing large-scale 

air combat tactics using stochastic genetic algorithms. The tool integrated four key components: 

1) autonomous blue/red player agents, with their individual aircraft and tactics; 2) an engagement 

simulator used to play out a tactical scenario; 3) performance metrics reflecting engagement 

outcome and tactical advantage; and 4) a genetic algorithm (GA) ‘engine’ for performance based 

optimization of blue team tactics.  

The tool’s capabilities were demonstrated throughout the optimization of blue team 

formation and intercept geometry in a series of tactical engagements. The tactics implementation 

used a hierarchical concept that built large formation tactics from small conventional fighting 

units, facilitating the design of tactics compatible with existing air combat principles.  In this study, 

genetic optimization was utilized in four different scenarios. It was found that in each of the 

scenarios, with respect to casualties, relative advantage, and risk the blue team, that was 

supported by the genetic algorithm based optimization system, outperformed the red team.  
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Navigation of the unmanned aerial vehicle  

Marin et al. (1999) investigated the use of a genetic algorithm to develop rules that guide 

an Unmanned Aerial Vehicle (UAV) by modeling the amount of uncertainty the UAV faced in 

terms of probability distributions over grid cells representing terrain. The authors employed the 

SAMUEL evolutionary learning system to create a set of rules with which to guide the UAV. For 

training and testing, SAMUEL was provided with terrain data on vegetation, slope, hydrology, 

roads, and obstacles. The target data consisted of actual tank locations reported every 30 

seconds over about an hour. Over thirty tests, the rules developed by the system were able to 

locate the tank and successfully monitor its location. The authors suggested that further work 

needed to be done for developing more meaningful measures of effectiveness for the system. 

The authors would expand the study to include multiple tanks and would attempt to assess the 

impact of group information on the evolution of rules. 

 

Control of anti-air missiles  

Nyongesa et al. (2001) in their study described the application of genetic programming to 

delay-time algorithms for anti-air missiles equipped with proximity fuzes. The study showed that 

by applying genetic programming, an evolutionary optimization technique, determination of the 

timing could be automated and made near-optimal.  

Simulation study with two parameter values showed that the evolved algorithms 

accurately tracked the regions, which in a real missile end-game scenario would correspond to a 

high probability of destroying the target. Performance measures showed that the root mean 

square difference between the actual and predicted were less than 0.01% that implied a near 

optimal prediction. Appendix C summarizes the studies reviewed on utilization of genetic 

algorithms. 

 

6.4  Hybrid intelligent control systems 
Intelligent helicopter flight controller  

Zein-Sabatto and Zheng (1997) proposed for an intelligent helicopter flight controller by 

combining artificial neural network, genetic algorithms, conventional PID controllers, and fuzzy 

logic algorithms. In this study, the design of the controller was based on experimental data 

collected from actual helicopter flight. First, a neural network was trained to learn the dynamic 

characteristics of the helicopter.   
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Figure 16 below illustrates the block diagram of the neural network based closed loop 

system.  Based on the neural model, the coefficients of a PID controller used for blade angle 

control were searched by using genetic algorithms. The main rotor speed was designed using 

fuzzy logic algorithm based on knowledge generated from understanding the aerodynamic theory 

and analyzing the helicopter experimental data. The intelligent helicopter flight controller was 

formed by combining the blade angle PID controller and rotor speed fuzzy controller. Figure 17 

shows the PID-fuzzy intelligent altitude controller for the helicopter.  

 

Figure 16 - Block diagram of the NN closed loop system (after Zein-Sabatto and Zheng 1997).  

 

 

Figure 17 - The PID-fuzzy intelligent altitude controller architecture system (after Zein-Sabatto and 
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Zheng, 1997).  

 
Simulation results showed that for desired altitude input, the intelligent controller was able 

to generate proper control signals for both the blade angle and rotor speed controls. The authors 

stressed on future research by implementing the controller and testing the performance with real 

flight and then modify and improve the controller. 

 

Fault tolerant flight control system  

Idan et al. (2001) introduced an intelligent adaptive neural network based fault tolerant 

flight control system that blended aerodynamic and propulsion actuation for safe flight operation 

in the presence of actuator failures. Fault tolerance was obtained by a nonlinear adaptive control 

strategy based on online learning neural networks and actuator reallocation scheme. Pseudo-

control hedging (PCH) was used to address NN adaptation difficulties arising from various 

actuation anomalies that include actuator position and/or rate saturation, discrete control, actuator 

dynamics, and partial or complete actuator failures. The control system incorporated a reference 

model within the control loop. The control system included approximate dynamic inversion and 

pseudo-control hedging compensation.  

A nonlinear single hidden layer NN was used to compensate for the inversion error. The 

performance of the proposed system was tested on a numerical model of the Boeing 747 aircraft. 

Simulation of the study showed that by using the adaptive control system the secondary control 

channels were able to satisfactorily control the speed, pitch rate, and thrust. The adaptive system 

was also able to successfully identify the model inversion error of the aileron control loop.

 

Vortex flow control  

Joshi and Valasek (1999) proposed for a neural network based controller for bang-bang 

type vortex flow control nozzles on a generic X-29A. A full state feedback controller was used for 

the continuous control effecters. The neural network designed was a three layer network with 

symmetric hidden layers, which optimized a given quadratic performance index. This 

performance index allowed the designer to specify appropriate weights for states and control 

effecters to satisfy given specifications. The study also compared the Neural Network Controller 

to previously designed Model Predictive Variable Structure, and Fuzzy Logic Controllers for the 

same benchmark problem. Evaluation criteria consisted of closed loop system performance; 

activity level of the VFC nozzles, ease of controller synthesis; and time required to synthesize 

controller. The study found that, from a strictly performance point of view, each controller 

provided good closed-loop performance. The fuzzy based and neural network based controllers 
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each demonstrated a 9% improvement over the Model Predictive Variable Structure Controller. 

From an ease of synthesis point of view, the Model Predictive Variable Structure Controller was 

superior to the Neural Controller and the fuzzy based.  

The distinct advantage of the neural controller is seen when the operating conditions 

depart significantly from the design conditions. The neural controller demonstrated clearly 

superior robustness characteristics. 

 

Adaptive model-based control of aircraft dynamics   

Melin and Castillo (2002) proposed for a hybrid method for adaptive model-based control 

of nonlinear dynamics systems using neural networks, fuzzy logic and fractal theory. This hybrid 

system was used for controlling aircraft dynamics systems. For modeling, a generalized Sugeno 

inference system was used in conjunction with nonlinear differential equations as consequents of 

the fuzzy rules. Neural networks were used for identification and control while fractal dimensions 

were fed into fuzzy rule base. Figure 18 illustrates the generic architecture for the adaptive neuro-

fuzzy-fractal control.  

 

Figure 18 - Generic architecture for the adaptive neuro-fuzzy-fractal controller (after Melin and 

Castillo, 2002).  

The study used three-layer neural networks with Levenberg-Marquardt algorithms. 

Back propagation technique was used to tune the data. The simulation of this hybrid system 

showed that identification error was reduced to the order of 10-3 and the final control error 

using Leveberg-Marquardt was 0.0023. 
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Positioning of military units  

Kewley and Embrechts (1998) developed a fuzzy-genetic decision optimization that 

solved a problem of positioning military combat units for optimum performance. The optimizer 

used a simulation model to evaluate solutions, a fuzzy logic module to map simulation outputs to 

a single fitness value, and a genetic algorithm to search the terrain for a near-optimal combination 

of unit positions. The results of the study showed that this fuzzy-genetic system outperformed a 

human expert during a simulated battle. The mean enemy loss was significantly higher when 

fuzzy-genetic optimizer was used compared the human expert. Further, the mean friendly loss 

was significantly less for fuzzy-genetic optimization system than for human expert. However, the 

authors strongly suggested for the optimization system to be used as a decision aide rather than 

a decision maker. 

Target motion analysis  

Ganesh (1999) argued that fuzzy logic could offer an enabling technology for automated 

uncertainty management in the data integration process. In his study, application of this 

technology to the fuzzy characterization of contact speed with uncertain information was 

demonstrated, and was shown to provide significant improvement in tracking solution quality for 

the single-leg target motion analysis problem. The uncertainty in the target end-point location was 

described by an enhanced area of uncertainty region that was obtained through combination of 

the derived fuzzy range characterization with conventional probabilistic information.  

The author expected that significant benefits would be derived from this technology 

through (1) increased automation of operator functions, and (2) improved quality of information 

provided to support informed decision-making; resulting in reduced manning and attendant cost 

savings. 

 

Complex flight control systems  

Wills et al. (2001) proposed for new software infrastructure for complex control systems 

that exploits new and emerging software technologies. They described a three-level hierarchical 

control architecture where high-level control incorporates situation awareness, reactive control 

and model selection; mid-level includes mode transition; and low-level involves stability and 

control, and augmentation system.  

The study also presented an open control platform (OCP) for complex systems, including 

those that must be reconfigured or customized in real-time for extreme-performance applications. 
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The OCP consists of multiple layers of application programmer interfaces (API) that increase in 

abstraction and become more domain specific at the higher layers. A hybrid control strategy was 

adopted by combining PID and neural networks based controls that operated on flight trajectory 

(outer loop) and attitude (pitch, roll, and yaw) (inner loop). This OCP was successfully 

implemented in a helicopter-based test bed.  

 

Rotorcraft control system  

Leitner et al. (1998) developed a full authority, six degree of freedom controller of a 

rotorcraft that provides autonomous, high performance, robust tracking of a specified trajectory. 

The controller was a combination of traditional PID controller and a neural network based 

controller. The nominal PID controller was a two time scale input-output-linearizing controller 

which exploited the well known nonlinearities in the equations of motions, but ignored the 

variations in the aerodynamically varying quantities. The nominal controller was enhanced with a 

simple two-layer adaptive neural network that accommodated for the variations in the dynamics 

and guaranteed ultimate boundedness of the tracking errors in the closed loop. The controller 

was tested on rotorcraft with highly aggressive, elliptical turn command. The results showed that 

there were very small tracking errors in both inner and outer loop commanded variables 

throughout the maneuver. The vehicle remained demonstrably stable throughout the maneuver 

and all controls remained within their allowable limits.   Appendix D summarizes the studies 

reviewed on utilization of hybrid controllers. 

 

6.5  Classical techniques in adaptive flight controls 
The most widely studied approach in nonlinear adaptive flight control involves the use of 

nonlinear transforms and differential equations that results in system exhibiting linear dynamics 

(Wahi et al., 2001). This phenomenon is called “feedback linearization”. Feedback linearization 

theory has found many applications in flight control research.  

Meyer and Cicolani (1980) incorporated the concept of a nonlinear transformation in their 

formal structure to advanced flight control. Menon et al. (1991) introduced a two-time-scale 

approach to simplify the linear transformations. A special case of feedback linearization 

control, called ‘dynamic inversion’, has been investigated extensively for application to super 

maneuverable aircraft (Bugajski et al., 1990; Snell et al., 1992; Buffington et al., 1993).  

The above studies showed that dynamic inversion was an effective way of compensating 

for the nonlinearities associated with high angle of attack flight. However, Brinker and Wise 

(1996) demonstrated that dynamic inversion technique could be vulnerable to modeling errors. 

Due to this limitation, a variety of robust nonlinear control schemes were proposed. These 
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techniques provided robustness to sources of uncertainty that typically include unmodeled 

dynamics, parametric uncertainty, and uncertain nonlinearities (Brinker and Wise, 1996; Adams 

and Banda, 1993; Buffington et al., 1993). Krstic et al. (1995) introduced a class of so-called 

‘backstepping’ techniques as an approach to the control of nonlinear systems. Backstepping 

employed Lyapunov synthesis to recursively determine nonlinear controller for linear or nonlinear 

systems with a particular cascaded structure. This paradigm afforded the control designer greater 

freedom in choosing the form of feedback control (Krstic et al., 1994; Kokotovic, 1992).  

Parametric adaptive control schemes can be divided into direct and indirect methods. 

Indirect adaptive control involves online identification of plant parameters. On the basis of this 

identification, a suitable control law is implemented (Calise and Rysdyk, 1998). In case of direct 

adaptive control, the parameters defining the controller are updated directly. Studies of Sastry 

and Isidori (1989) and Kanellakopolous et al. (1991) concentrated specifically on adaptive control 

of feedback linearization systems.  

Dardenne and Ferreres (1998) presented a simple method for the synthesis of robust 

dynamic feedback of feedforward controllers that satisfy classical time and frequency domain 

specifications. In Eberhardt and Ward (1999) an indirect adaptive control system approach is 

demonstrated via the nonlinear six degree of freedom simulation of a tailless fighter aircraft. 

Huzmezan and Mciejowski (1998), in their study, described reconfigurable flight control of a 

high incidence research model using predictive control. The paper described a scheme for 

fault-tolerant control of an aircraft with a high angle of incidence. The study combined the use 

of high fidelity model of the aircraft with model predictive control, and assumed the availability 

of information about the faults that had occurred. Looye et al.. (1998) presented the 

generation of a linear fractional transformation (LFT) based uncertainty model for a civil 

aircraft that started from a nonlinear dynamic model with explicit parametric dependencies. 

Boskovic and Mehra (1999) introduced a new parameterization for the modeling of control 

effector failures in flight control. The approach was illustrated in numerical simulations of the 

F-18 fighter aircraft carrier landing maneuver. Le Gorrec et al. (1998) demonstrated in 

improved version of traditional eigenstructure assignment. It produced systems that met 

robustness requirements. The proposed technique reduced t solving for a quadratic problem 

under linear constraints. 

 

 

 

7.  NEURO-FUZZY BASED ADAPTIVE INTERFACE 
7.1  Fighter pilot cognition and artificial neural networks 

Smith et al. (1991) developed a model that represented the major cognitive states and 
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decision-making processes of a fighter pilot during the intercept phase of a two-versus-two air 

combat engagement against a single group of adversary aircraft. In the study, and artificial 

neural network model was integrated into a hybrid structure containing conventional symbolic 

logic and algorithmic elements.  

A conceptual framework was formulated that defined the situation awareness (SA) 

construct. The conceptual framework of this pilot engagement consisted of four  

Adaptive human-computer interfaces  

entities: 1) the environment (e), information (i), knowledge (k), and action (a) vectors.  

Figure 19 illustrates the flow of data among these entities.  

 

 

Figure 19 – Situation Awareness Data Flow (after Smith, 1991) 

 

 
 
 
7.2  Cognitive Filter/Mission Tactical Skills 

In this study, a database was created that related the time histories of certain pilot 

cognitive processes that included situation awareness, workload, a decision-making to 

corresponding traces of tactically relevant environmental variables. Subjective evaluation of 32 

trajectories with 288 discrete tactical situations was included in the database. The responses from 

the database formed the decision vector.  A nonlinear algorithmic pilot model was incorporated in 
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the database. The topology and choice of parameters for the model resulted from a knowledge 

representation plan based on interviews with air combat tactics and neuro-physiological domain 

experts. Figure 20 shows the database model.  

 

Figure 20 – Database of Pilot Model (after Smith 1991) 

 

The overall simulation of the study consisted of four parts: 1) a threat generation model, 

2) a vehicle dynamics model, 3) a sensor model, and 4) the artificial neural network (ANN) model. 

In the model, the threat generation model provided the capability to present threat aircraft to the 

ANN model. An unclassified generic fighter aircraft was used as a basis for the fighter dynamics 

model. A deterministic sensor model provided the link between the threat generation/fighter 

dynamics and the ANN. The key element of the ANN model was the use of Grossberg’s gated 

dipole. The gated dipole is a biologically motivated structure that is based largely upon the 

characteristics of the chemical transmitter accumulation and depletion at the synapse. This gated 

dipole utilizes a tonic arousal level to lead the structure. It also generates an impulse response to 

the sudden onset and offset of the observed events. Figure 21 depicts the  network hierarchy.  
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Figure 21 – Network Hierarchy (after Smith 1991) 

 
7.3  Interactive adaptive interface and fuzzy reasoning 

Arai et al. (1993) developed an adaptive interface that allowed the interactive adaptation 

of both the machine and the user. The interface changed the characteristics of the system 

according to the given task considering the user’s skill level, technique, characteristics, and 

physical condition. The interface is illustrated in Figure 22.  The interface was realized according 

to four kinds of knowledge: 1) knowledge of the system, 2) knowledge of the user, 3) knowledge 

of the application, and 4) knowledge of interaction between the system and user. Based on this 

knowledge, the three main elements that were formulated in the model were: 1) user observation 

system, 2) knowledge database, and 3) adaptive assistance system. Since it is difficult to get the 

characteristics of the user continuously and adjust from a single observation and the user cannot 

cope with sudden change of the system, a reciprocal adaptation of both the system and user was 

proposed. In this case, recursive fuzzy reasoning was used to calculate the assistance level.   
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Figure 22 – The concept of a interactive adaptive interface (after Arai, 1993) 

Equations (1) and (2) below represent the recursive fuzzy reasoning that was an extension of 

the simplified fuzzy reasoning.  

 

The basic assumption was that, by considering the historical changes of the measurement data, it 

is possible to estimate the user’s skill level changes. In the simulation game, the galvanic skin 

response (GSR) was used as the measurement data. The user’s mental stress was estimated 

from using recursive fuzzy reasoning from the GSR data. From the simulation game it was found 

that performance under recursive fuzzy reasoning was significantly better than it was in ordinary 
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fuzzy reasoning.  

 

7.4  Visual perception and fuzzy-neural networks 
Hungenahally (1995) implemented a fuzzy neural system in the design of a visual display 

panel for the purpose of real time operations. This study presents a method of modeling complex 

information using fuzzy graphs and then integration of the mapped values with higher level 

learning algorithm for the design of an intelligent warning system. In this proposed system, data 

acquired from aircraft sensory system were mapped onto fuzzy maps. The information thus 

represented served as the input to a rule base and/or fuzzy neurons. The fuzzy neural network 

would process the mapped fuzzy information using fuzzy operators in conjunction with a fuzzy 

knowledge base. The resulting output of the fuzzy neural network would be displayed in a more 

formidable way for the human operator or the pilot. The fuzzy neuron comprised of three 

subunits: 1) the cognizer, 2) the signifier, and 3) the kernel.  

The cognizer employs cognitive mapping functions to map the phenomena ‘F’ from a 

real world domain [xm, xM] to a perceptual domain over [0,1]. The fuzzified inputs were 

weighted using a function W(k) where ‘k’ was a parameter dependent on the fuzzy knowledge 

on the cognized data. The shape of the weighing function Wn(k) was determined by the fuzzy 

knowledge base. The kernel of the fuzzy neuron operated several logical operations on the 

cognized and weighted information.  

This fuzzy neural network model was implemented in a virtual cockpit design or AVID 

system. The role of AVID was to provide a more ergonomic system for displaying the data and 

in the development of a complex warning system for the aircraft. Two different systems: 1) with 

fuzzy neural rule base, and 2) connectionist fuzzy neural network. Figure 23 shows the overall 

AVID system.   
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Figure 23 – Overall schematic structure of the AVID system (after Hungenahally, 1995) 

The connectionist network had four layers. Layer one was the aircraft input parameters 

(raw signal data). Layer two fuzzified the data by breaking them into linguistic variables and 

assigning a mean value. Layer 3 formed the rule base. Each node in layer three served as the 

rule parameter with inputs from the relevant nodes of layer 2. Layer four nodes would carry the 

warnings to be stored in priority order and screened. The system was implemented in a aircraft 

simulator with twenty simulated instrument variables. 

 

7.5  Synthetic vision and fuzzy clustering 
Korn and Hecker (2002) studied adverse weather conditions that affect flight safety and 

efficiency of airport operations. The study focused on the automatic analysis of millimeter wave 

radar images with regard to the requirements for a sensor based landing. It proposed for a 

‘electronic co-pilot’, which performed the same tasks as the pilot except decision-making. Figure 

24 shows the schematic diagram of the electronic copilot model.  
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Figure 24 – Electronic co-pilot concept (after Korn and Hecker, 2002) 

The key features of such system are situation assessment functions that allow automatic 

reaction in critical situations. The study focused on the radar image based navigation, i.e., 

determination of the aircraft’s position relative to the runway by analyzing the radar data without 

using either GPS or precise a priori knowledge about the airport.  

 

8.  INTELLIGENT INTERFACES FOR PROCESS CONTROL 

8.1  Interactive interface for process monitoring 
Arai et al. (1993) designed an interactive adaptation interface monitoring and assisting 

operator by using recursive fuzzy criterion. Authors defined the concept of interactive adaptation 

interface as the interface that changing system according the given task considering the user 

features such as skill level, techniques, characteristics, physical condition. Two kind of interactive 

adaptation were distinguished: 1) the Adaptive Assistance Interface, and 2) the Adaptive 

Information Interface (see Figure 25 for application of the interactive adaptation system). An 

application of interactive adaptation assistance in the motion level in the adaptive interface for the 

simulation Air Hockey game was described. In this application, the system changes the 

automation level according to the user performance and the mental state (stress level).    

The level of assistance decreases with the increase in the operator skill level, and 

increases with the level of the increased stress.  Unexpected changes of the interface and 

assistance level could surprise and confuse user. In order to prevent sadden changes of the 

interface, the method of assistance level estimation was proposed. This method was based on 

recursive fuzzy reasoning (Equations 1 and 2) the historical change of the measurement data. 

The proposed method allows implementing gradual change of assistance level according to the 
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changes in skill level. The generic structure of the interface architecture consists of three 

components, the observation system, the knowledge database, and the assistance system.   

The observation system monitors the user state. The Galvanic Skin Reflex  

G.S.R. was used to measure the human user’s state and to evaluate the stress level. The 

experimental results showed improvement of the sadden assistance changes problem by 

recursive fuzzy reasoning.   

 

Figure 25 – The interactive adaptive interface (after Arai, 1993) 

 

9.  INTELLIGENT INTERFACES: APPLICATIONS 

9.1  Decisional Module of Imagery 
Kolski et al. (1993) presented the implementation of AI techniques for intelligent interface 

development in the field of the complex process control. The intelligent interface called the 

Decisional Module of Imagery (DMI) was integrated into an experimental platform and its 

validation showed that it was technically operational. The "heart" of the DMI is an expert system 

that manipulates three main objects (the WHAT, WHEN and HOW objects). The interface were 

developed in the Laboratoire d'Automatique Industrielle et Humaine, Universite de Valenciennes, 

France. The Decisional Module of Imagery (DMI) was integrated into global human – machine 
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system in the automated process control rooms to obtain an overall assistance tool. The system 

architecture consist of following main structures: 1) Supervision calculator, 2) Task model, 3) 

Operator model, 4) DMI, and 5) Expert system.  

The Supervisory Calculator centralizes all of the process scored data. These data are 

accessible by both the decision support expert system and the DMI Using these data, the 

decision support expert system infers information such as predictive, diagnosis or recovery 

procedures. This set of information is transmitted to the DMI, which selects those that can be 

presented to the operator. This selection is based on a task model to be performed by the 

operator, and on an operator's "model" containing information about the operator. The task model 

was initially restricted to problem-solving tasks and results from a previous analysis of fixed tasks 

that have to be performed by the operator. This model is based on the general model of 

Rasmussen, whereby a task is built through four information-processing steps: event detection, 

situation assessment, decision-making and action. This task model contains a set of process 

significant variables used by the operator while performing his different tasks. The operator model 

integrates a set of following ergonomic data: (1) three possible levels of expertise for the human 

operator (unskilled, experienced, expert), (2) the type of displays associated with each type of 

operators' cognitive behavior, corresponding to Rasmussen's model, (3) the representation mode 

associated with each type of display.   

The aims of the DMI are as follows: (1) to select the data that can be displayed on the 

screen, taking into account both the operational process context and the informational needs of 

the operator; make it possible to operator to supervise the process and to define possible 

corrective actions;  (2) to define the ergonomic parameters associated with the presentation of 

information for the human operator to understand more easily; and (3) to add the corrective 

advice to  the decision support expert system reasoning and thus to prevent conflicts between 

the system and the human operator. The expert system consists of an inference engine; a 

knowledge base on the "What"; a knowledge base on the "When"; a knowledge base on the 

"How". 

 
9.2  Adaptive information presentation 

The DMI adapts itself to the operator by considering information about the following 

factors:  

(1) the various operating contexts of the supervised system,  

(2) the operators,  

(3) the cognitive and sensormotor tasks of the operators.   

 

The following criteria were established to lead the "What-When-How" decisions of the 
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interface:  

(1) WHAT: All the knowledge and rules needed for each "What-When-How" decision 

is gathered in knowledge bases that together with inference engine constitute the 

expert system. The inference engine (Figure 26) handles nine types of fact that 

represents: 1) What must be displayed, when and how;  

(2) The process functioning state, by the use of the facts: "Functioning_ situation", 

"Situation severity", "Operator's-task";  

(3) The type of the operator and his eventual requests: "Operator's _ class", 

"Operator's _ request"; and  

(4) The previous state of the interface: "Previous _ What" (was displayed at the last 

step).  

 
Figure 26 – The Kolski inference engine (after Kolski, 1993) 

 

 

 

 

Facts (2) to (4) are part of the initial fact base. A supervisor provides the expert system 

with the data necessary for development of this base. The inference engine uses this knowledge 

base to deduce new facts. The engine starts by inferring on the fact What. The inferred value(s) 

of the fact What are added to the fact base and then, the facts When and How are deduced. The 

expert system learns to revise and modify the initial knowledge base by following methodology: 1) 

The census of all the possible values that are linked to decision criteria about the display is made, 

icreating the  "Possible Fact Base"; 2) The connection is built between the registered decision 

criteria and the potential decisions of the DMI; and 3) Techniques derived from the machine-

learning domain are generated to optimize decision trees.   

This tool is based on the algorithm ID3 (Iterative Dichotomizer 3) that classifies 
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decision trees, from the learning set. The experimental platform architecture consists of a set 

computerized modules, including:  

 
 The process simulator;  

 The human operator assistance functionalities, including: 1) a prediction module; 2) an 

alarm treatment module; 3) an action plan generator; and 4) a justification generator.  

 The Decisional Module of Imagery, that integrates:  1) a set of knowledge bases 

answering the three ergonomic questions: "What", "When" and "How"; and 2) an 

inference engine that exploits rules contained in the three knowledge bases.  

 A graphical task that manage and animate all the views of the interface, using the 

DMI's answers concerning the "What", "When" and "How" questions;   

 A database about the human operators ;  

 A supervisor module (to manage the coordination and the communication through the 

common shared memory).   

 A module able to manage failure situations.   

 A module able to manage operators' actions and requests.  

 

9.3  Intelligent interfaces for supervisory control 
Begg (1994) presented the prototype intelligent graphical user interface developed for 

application in the real-time supervisory control systems. The main focus of this application to 

provide the intelligence within interface to assists users in locating, determining, and resolving 

system problems. The high-level architecture (Figure 27) consists of following: 1) User Interface 

(UI); 2) User Interface Resources (URI); 3) Graphics Resources (GR); and 4) Intelligence 

Assistance Resources (IAR). The IGI Channel component represents the central communication 

channel between operator and Network Management System (NMS) and between operator and 

user interface. The User Interface Resources (URI) includes a system model, data logging 

services, interaction and display techniques, services providing multiple input and output 

mechanism.  
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Figure 27 - High-level architecture (after Begg (1994). 

The Graphics Resources (GR) includes display and interaction agents. The Intelligence 

Assistance Resources (IAR) includes a collection of declarative knowledge bases and inference 

engine that acts on this knowledge. The knowledge bases encapsulates model of the total 

context in the IGI is operation. This includes models of the domain, user, the user task, and the 

state of interface. Knowledge for changing the state of the interface comes from human factors 

guidelines and cases studies results.  

Characteristics  Graphic System  Expert System  

Real-time support  System-driven events User-

driven events  

Inferencing  

Process modeling  Task complexity  Reasoning  

UI Design  Flexible and configurable good 

graphics  

Interruption of inferencing  

Integration  External process interface  External process interface  

 

The implementation requirements listed in the table above were used to determine how the high 

level architecture.  The prototype includes wide range of the graphic techniques for visualization 

and control of domain information. The variable zoom techniques were used to assist the user in 

the overcoming “lost in the space” problem. Qualitative overviews comprise abstraction of the 

low-level data and provide higher level monitoring and problem detection capabilities. 

 

9.4  Intelligent interface for large-scale systems 
Yoon and Kim (1996) applied the intelligent interface in aiding the analysis of human 
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actions and human-machine interaction in the large-scale systems. The system was developed 

for incident analysis in nuclear power plants in Korea. The intelligent interface was applied in the 

COSFAH (computerized support system for analyzing human errors). The purpose of this system 

is to assist the analysts who investigate incidents in large-scale human-machine systems. The 

support system was developed as a part of computerized HPES (human performance 

enhancement system) used in nuclear power plants. The architecture of the system (Figure 28) 

COSFAH was developed to reduce the high mental workload in the composition of an event 

sequence and to ensure the quality of error analysis. The support system helps the analyst to 

compose an event sequence.  

The interface module provides two major aiding features: the within-record prompting 

feature and the causal context verification feature. These features are presented via the 

display and dialog management (DDM) sub-module. There are three inference modules that 

produce aiding information for event description. The script matching and guidance module 

provides within-record prompts for composing each line, or record, of the event sequence.  The 

data items composing each record include date, time, record type, error mode for human 

actions, anomaly indication for system states, and the involved subsystem, part, and its 

attribute. There is also invisible information associated with each line such as causal 

relationships with other human actions and system states, related instructions or procedures, 

and a free-style note for additional description.   

 
 

Figure 28 - COSFAH system architecture (after Yoon and Kim (1996).  

 
 
The data items and their values possess prescribed mutual relationships including requirements 

or incompatibilities. Due to the relationships and constraints the line of the event sequence is 

composed. The script matching and guidance module uses a script to assist the user in 

composing each line.   
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The system performs two types of causal context verification: 1) backward contextual 

verification is conducted after each line of event description is put in, and 2) forward contextual 

verification is started after the first draft of event description is done.  In both cases the system 

examines the consistency and completeness of the event sequence. The system uses the 

operator model or operational procedures model to check if the activities in the event sequence 

are logically well composed according to the model. The aid continuously checks the paths 

through which activates are related to each other against the possible paths allowed in the model. 

When a mismatch is detected, the aid prompts the analyst to add a record of the missing stage or 

redefine the relationships between the current record and the previously recorded activities. Two 

inference modules support the causal context verification feature of both directions: 1) a model-

based inference that is based on an operator model, and 2) a rule-based inference that uses 

operational requirements.  Both reasoning modules are supported by a database that contains 

standardized terms for: system, subsystem, parts, and attributes, and the relationships among 

them. Operational requirements in the form of production rules are used for the search for 

missing information in the event description. 

 

9.5  System interfaces that adapt to human mental state 
Takahashi et al. (1994) analyzed the effectiveness of a mutually adaptive interface that 

accommodates the form of human machine interaction according to human mental state.  

The adaptive interface was applied to control task difficulty in an example task (X-window-based 

game, called X-Jewel). The architecture of the adaptive interface is presented in Figure 29. 
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Figure 29 – The architecture of a mutual adaptive interface (after Takahashi, 1994) 

The Cognitive State Estimator uses as inputs the physiological measures of the users.  The 

estimated mental workload is utilized by the Feedback Controller to control the form of 

adaptation. The Mental Work Load (MWL) was used as a representative index of the subject 

mental state and was estimated by the physiological measures. The physiological measures 

depicted in the table below were used as estimation of the mental workload. The time margin 

allowed to complete the task was used as the index representing the MWL. It was assumed that 

the MWL would increase if the time margin for task completion decreased. The artificial neural 

network was adopted as the method for empirical modeling the relationship between the MWL 

and observed physiological measures. The adopted neural network was a three layered 

feedforward network and is shown in Figure 30.  The results of the laboratory experiments 

showed a significant positive affect on the performance score.  
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Physiological Features  Classification  

Absolute Level  1. High 2. Low 3. Normal  Heart Rate (/min)  

Trend  1. Increase 2. Decrease 3. Steady  

Absolute Level  1. High 2. Low 3. Normal  Respiration Rate 

(/min)  Trend  1. Increase 2. Decrease 3. Steady  

Blood Pressure (mmHg)  1. Increase 2. Decrease 3. Steady  

Skin Potential Response (mV)  1. None 2. Low 3. Medium 4. High level  

Blink Rate (/min)  1. High 2. Low 3. Normal  

Number of Saccado (/min)  1. High 2. Low 3. Normal  

 

 

 

 
 

Figure 30 - The configuration of adopted neural network (after Takahashi et al. 1994). 

 

10.  ADAPTIVE DECISION MANAGEMENT SYSTEMS 

10.1  Adaptive decision support 
Fazlollahi et al. (1997) described an adaptive decision support system (ADSS). In an 

ADSS, the decision maker controls the decision process. However, the system monitors the 

process to match support to the needs. The proposed architecture evolves from the traditional 

DSS models and includes an additional intelligent adaptation component. The adaptation 

component works with the data, model, and interface components to provide adaptive support. 

The prototype was applied in the forecasting, specifically data analysis and model selection, as 
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the area of domain knowledge. In this prototype system, the user is provided with the sales data 

plotted against time and asked to examine the plot and select the most appropriate forecasting 

model to predict future sales.  

The system was built by mapping the conceptual components of the architecture to 

different files, programs and other features in KnowledgePro software package. KnowledgePro is 

an environment that supports rapid prototyping in rule-based programming for expert systems. 

Authors defined ADSS support human decision-making judgments by adapting support to the 

high-level cognitive needs of the users, task characteristics, and decision contexts. Adaptation 

was achieved by matching support needs with the system support. The support needs of the user 

are determined by monitoring the user performance and support history. The support needs of 

the task and the contexts are identified through monitoring the decision process and selecting the 

appropriate models. ADSS monitor the decision-making process; diagnose 

problems/opportunities, and design and implement interventions. Such abilities rest on having 

knowledge of the specific user, the problem domain, an expert model of the decision process, 

and strategies for intervention. ADSS provides active participation in the decision-making 

process. That includes performing tasks such as finding patterns in data, selecting appropriate 

models, or acting as critiquing agents.  

The proposed architecture for ADSS (Figure 31) is an evolution of the Sprague and 

Carlson model (Fazlollahi et al., 1997).  ADSS have three subsystems: 1) user diagnosis, 2) 

problem-solving, 3) guidance/instruction. Each subsystem incorporates data, model and 

adaptation component. The user diagnosis subsystem includes information regarding what the 

user knows and what support the system has already communicated to the user.  
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Figure 31 – The ADSS architecture (after Faziollahi, 1997) 

 

The problem-solving subsystem includes the model derived from a theory or stated by 

the user for appropriately solving the problem. ADSS do not uses the general model of human 

problem-solving processes to guide their automatic intervention in the decision-making 

processes. The more attainable descriptive models of specific tasks were used to guide some of 

the activities of ADSS. The guidance/instruction subsystem includes knowledge about how to 

intervene in the decision-making processes.  

The ADSS architecture addresses the functionalities of ADSS, which are (1) to monitor 

the decision makers, the decision-making tasks and the decision contexts, (2) to make inferences 

on the basis of descriptive models, and (3) to intervene at the discretion of the decision maker to 

provide decision support. Each component of the system divided into subcomponents. Data 

consists of the problem, the concepts/procedures, and the user history subcomponents. It has 

data in the form of independent data files and random access memory (temporal data).  

 Data:   
 Problem:  The problem data are presented to the user in a graphical format (bitmap) as a 

time series plot that the user has to analyze:  

 Concept/Procedure: the concepts and procedures are assembled in text and graphics 

formats, in accordance with the problem type and the problem-solving stage 

requirements.   
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 User History: this subcomponent deals with temporal data. However, to maintain a 

cumulative user profile, the data from the random access memory is dumped to a trace 

(ASCII text/database) file, after every significant event. This file contains data regarding 

navigation, time stamping, results, performance, etc. In every new session, the trace file 

from the previous sessions of the user is accessed to adjust for the previously learned 

concepts and procedures.  

 

 Model:  The model component consists of rule-based programs (executables), which 

store the various models used by the system. The model component encapsulates 

three subcomponents: 1) the problem-solving model, 2) the guidance/instruction 

model, and 3) the user diagnosis.  

1. The Problem-solving model contains the problem-solving models, represented through 

associated concepts and associated procedures. This knowledge was modeled by 

programming in Knowledge Pro's rule-based expert system shell.  

2. The Guidance/instruction model determines the format of the presentation of the 

concepts and procedures that the user may require. The inference is based on the 

performance of the user.  

3. The User diagnosis model has rules that diagnose and interpret the user history for 

determining the strengths and weaknesses of the user in the domain knowledge.  

 

 Adaptation:  The adaptation is defined through the expert problem/solving 

evaluation, the user performance evaluation, and guidance subcomponent. All 

subcomponents are exclusively rule-based, and include the following:  

 Expert/Problem Solving:  The expert problem/solving evaluation subcomponent 

associates the problem file name with the problem-solving knowledge rule block. After 

comparing the problem and the expert's opinion, the subcomponent determines the 

expert's representation of the required concepts (C E) and the procedures (PE).   

 User Performance Evaluation:  The user performance evaluation subcomponent 

examines user history from the trace file and the user diagnosis knowledge. Using the 

two, this subcomponent determines the concepts (C U) reviewed and procedure (Pu) 

performed by the user.  

 Guidance Module:  The guidance subcomponent compares the inferences from the 

expert problem-solving evaluation subcomponent and the user performance evaluation 

subcomponent, and generates the deviations for concepts (AC) and procedure (AP).  

 

The system bases its inferences of formats and concepts on the user profile and present 

user performance (AC and AP). In the prototype system, the outcome for each of the four cases 
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can be either right or wrong. Therefore, as more information is gathered, the decision tree 

develops more branches (Figure 32).  

Outcome 

for Case 

B  

 

R = Right  

W = Wrong  

 

Figure 32 - Example tree (after Fazlollahi et al. 1997)

 

10.2  Adaptive interfaces based on function allocation 
Scallen and Hancock (2001) examined adaptive function allocation in a multitask aviation 

simulation with tracking, system monitoring, and target identification tasks. In this study three 

Adaptive Function Allocation (AFA) strategies were examined. In full AFA (auto), the tracking task 

was completely automated. In one part-task AFA condition, only the vertical component of 

tracking was automated during AFA episodes while the pilot continued to track horizontally (auto-

v). In a second part-task AFA condition, only the horizontal component was automated during 

AFA episodes while the pilot continued to track vertically (auto-h). During the AFA episode, pilots 

were cued to the shift in control by an additional display. Monitoring and targeting were 
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completely manual at all times. The STARFIRE (Strategic Task Adaptation: Ramifications for 

Interface Relocation Experimentation) adaptive allocation test platform was used. The following 

tasks were developed to test adaptive function allocation:  

 Task1 – Tracking.  The tracking subtask was located centrally on the HUD. The tracking 

employs a 3-D pathway-in-the-sky that serves to guide the pilot along a pre-selected 

route with turns, ascents, and descents in all axes. The pathway is redrawn each second 

and presents a 10-sec lead. The task goal was to center the aircraft in the path by 

aligning a nose point symbol with a target symbol that travels through the path. The 

tracking highway-in-the-sky was imposed on a standard HUD symbology with pitch 

ladder, altitude, airspeed, and heading indicators. Whereas the tracking pathway-in-the-

sky is a 3-D representation, the tracking task itself can be reduced perceptually to two 

dimensional pursuit tracking.  

 Task 2 – Monitoring.  The system-monitoring subtask is a configuration of five lights 

(two green lights normally on, two red lights normally off, and one yellow light normally 

off) and four graduated sliding gauges with criterion-level indicators. The goal for the pilot 

is to reset the lights or gauges whenever they deviate from normal status by depressing 

response buttons on the instrument panel.   

 Task 3 - The target identification. The subtask required the pilot to scan the textured 

surface for 3-D targets (spheres, cubes, or pyramids). On detecting a target, pilots 

activated a screen menu, cycle through menu options, and selected the menu item that 

corresponds to the target shape by depressing switches on the flight stick. Pulling a 

trigger mounted on the flight stick completed the task.  

 
The results provide support for the implementation of adaptive allocation based on a 

hybrid model comprising elements of operator performance and mission relevant variables. 

Implementation of adaptive allocation was an effective countermeasure to the predictable 

decrease in tracking performance associated with the initial presentation of a surface target.   

10.3  Adaptive interfaces based on distributed problem solving 
Siebra and Ramalho (1999) developed adaptive interface model based on a distributed 

problem solving architecture. A Distributed Artificial Intelligence architecture consisting of four 

agents was adopted, the agents being perception, modeling, adaptation, and execution.  The 

Perception Agent receives and processes inputs from the user and the main system to which the 

interface is attached. The Modeling Agent is responsible for the initialization and updating of the 

user model, which contains information about three generic stereotypes (beginner, intermediate 

and expert users) plus an individual model for each user. This information is represented by a 

hybrid formalism combining production rules and objects.  The user is characterized by static 
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(e.g., user login) and dynamic (e.g., user abilities) features and his/her stereotype are dynamically 

updated by means of production rules.  

The Adaptation Agent has three basic functions: adapts the interface, fix anomalous 

actions and sets training sessions to the user. The knowledge necessary to accomplish these 

tasks is represented in the domain model. It contains the interface description (the interface 

objects, such as windows, icons, buttons, and menus), as well as generic adaptation strategies, 

including bug library, advising messages, etc. The adaptations are implemented as production 

rules of the type IF an error F occurs AND the user level is N THEN execute adaptation A. The 

Execution Agent implements the execution of actions and presentation of help, advising, error 

messages and information to the user.  

When the user is not able to click in a valid area with a mouse, the possible solutions are: 

(a) to increase the icon or button size; (b) to consider a valid area around the button or icon, or (c) 

to propose training session for the user, in the form of a “shot the target” game. Athena was built 

as a modular, reusable, extensible and portable interface. Due to this, Athena can be easily 

extended and attached (plugged in) to different systems.  

11.  GRAPHICAL INTERFACES FOR AVIATION SYSTEMS 
11.1  Interface for flight management system 

A graphical man machine interface for an Advanced Flight Management System (AFMS) 

was developed in the Department of Technical Computer Science (LTI) at RWTH Aachen has 

developed (in close cooperation with NLR (National Aerospace Laboratory, Amsterdam, 

Netherlands) (Marrenbach, Kraiss, 2000). The new user interface was created to replace today’s 

Control and Display Units (CDUs). The alphanumerical flight plan editing was replaced by a 

graphical user interface. A software prototype of such a CDU has been created, using Seeheim 

model and Statecharts for the definition of this interface.  

In the new user interface was used a graphical output device. Furthermore, the system-

oriented composition of functions was transferred into an operational structure. Therefore the 

functionality of the AFMS was partitioned into four levels, called main task, subtask, procedure 

and function. The main control elements of the AFMS are the main task and subtask selection 

keys, which are used to enter the main menus and submenus respectively. The line selection 

keys are used to enter the respective procedure and function. The rotary knob is used in order to 

change elements in various selection tapes and the touch pad is used in order to control a cursor 

on the graphical display.  

The AFMS provides two ways of access with different functionality: a function-oriented 

and an object-oriented access mode.  In the function-oriented mode, all functions are organized 

in a so called ’menu tree’. The “menu tree” contains ’branches’ and ’subbranches’ with the 
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column and line selection keys to access the needed function. The highlighting of the selected 

menu informs about top level (main menu) menu. The purpose of object-oriented mode, i.e. the 

quick modifications or alterations in flight, allows for direct access to the object on which a 

function has to be executed by moving the cursor of the touch pad to it. There are only a limited 

number of functions, which can be used for a selected graphical object. These functions can 

easily be associated with the CDU´s line select keys. Supplementary to the graphical 

representation of the flight plan (map-mode, plan-mode, vertical mode) an alphanumerical page is 

implemented (it is easier for the user to gain an overview of the whole constraint list if it is 

presented in this way). The benefits of the proposed interface design are as follows:  

. • The object-oriented approach to design reduces the number of possible functions 

during selection.   

. • Fewer keys are necessary, which results in more room for the larger display and in 

larger buttons, making it less likely to hit the wrong button by mistake.  

. • The graphical user interface simplifies translating the pilot’s idea of a flight plan into 

the system language.  

. • The comparison between the Alphanumeric CDU and Graphical ACDU showed that 

number of actions needed to complete was reduced up to 50%.   

 

11.2  A multi-windows flight management system 
Abbott (1997) developed an experimental flight management system (FMS) interface to 

examine the impact of the primary pilot-FMS interface, the control display unit (CDU), on initial 

FMS pilot training. The main purpose of the research was the examination of the experimental 

multi-windows CDU concept based on graphical-user-interface (GUI) techniques.  The FMS 

databases included U.S.-wide information on very-high-frequency omnidirectional ranges 

(VOR’s), low- and high-altitude airway structures, airports, and the geometry of airport instrument 

landing system (ILS) and runway configurations. Databases also were included for specific 

standard instrument departures (SID’s), standard terminal-arrival routes (STAR’s), and 

approaches for a limited number of selected airports. Performance optimization was based on a 

Boeing 757 class of airplane that was also the performance model for the airplane simulator used 

in the evaluation. This optimization provided climb, cruise, and descent schedules; fuel flow 

estimation; estimated waypoint crossing speeds and altitudes; and waypoint arrival-time 

estimation. The algorithms also accommodated pilot-entered climb, cruise, or descent speeds; 

cruise altitudes; and waypoint speed and altitude crossing constraints. The FMS could 

simultaneously handle four paths or profiles: a primary or active path, a modified active path, a 

secondary path, and a data-link path. The navigation display (ND) on the simulator instrument 

panel could display a primary or active path and either a modified active path or a secondary 

path. Two CDU concepts were developed for this study: a generic, baseline concept and a 
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graphical-user-interface (GUI) CDU concept. Both CDUs used the same underlying experimental 

FMS software that included the databases, path-definition routines, and path-optimization 

techniques. CDU’s were physically implemented on a 10-in. diagonal, 16-color liquid-crystal, flat-

panel display. The authors indicated that initial design was aimed at evaluating the effects of the 

multiple windows and direct-manipulation aspects of GUI designs compared to conventional 

designs. Therefore three major features of GUI were not used in proposed CDU design: pull-

down menus, resizable windows, and window scroll bars.  

11.3  A navigation hazard information system 
Kroft & Wickens (2001) examined effect of three de-cluttering techniques: fixed low 

lighting, interactive low-lighting and interactive de-cluttering. These de-cluttering techniques were 

applied to integrated high-clutter digitized displays containing navigation information and air 

hazard information. Low-lighting displays present one domain of information at a brighter 

luminance level than the other aspects of the display, while the de-cluttering display removes a 

domain entirely. Interactive displays allow the user to manipulate, which domain is highlighted, 

and fixed displays cannot be changed. The fixed low-lighting display did not produce higher 

accuracy than the baseline large display, nor did it reduce subjects’ response times. According to 

the authors, this lack of a benefit for low-lighting may be the result of a low readability of the low-

lighted information, particularly when the ground symbology was low-lighted.  

The interactive display produced longer response times that are directly related to the 

number of time subjects toggled between views. In addition divided attention questions produced 

longer response times and more toggles than focused attention questions. The authors 

concluded that the benefit of reduced scanning generally outweighs the cost of increased clutter 

produced by display integration. This effect (trade off) was more pronounced for divided attention 

questions than for focused attention questions, as predicted by the proximity compatibility 

principle.  

11.4  Elastic Windows Interface 
Kandogan & Shneiderman (1997) described the Elastic Windows Interface as an 

alternative to other windowing systems. The elastic windows design is based on three principles: 

1) hierarchical window organization, 2) space filling tiled layout, and 3) multi-window operations. 

The hierarchical window organization supports the user’s structuring their work environment 

according to their roles. It allows users to map their role hierarchy onto the nested rectangle tree 

structure. Hierarchical grouping of windows is indicated by gradually changing border colors 

according to the level of the window. This approach was applied in the hierarchical organization 

of different roles of a university professor: university research and teaching, industry, and 
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personal.  The hierarchical layout clearly indicates the hierarchic relationship between the 

contents of the windows by the spatial cues in the organization of windows. Hierarchical grouping 

provides role-based context for information organization. It also supports graphical information 

hiding capability where window hierarchies can be collapsed into a single icon (or other 

primitives) making the approach scalable. Collapsed hierarchy of windows can be saved and 

retrieved, which allows users to reuse a previous window organization  

The multi-window operations on groups of windows can decrease the cognitive load on 

users by decreasing the number of window operations. In the case of Elastic Windows, multiple 

window operations are achieved by applying the operation to groups of windows at any level of 

the hierarchy. The results of operations are propagated to lower level windows inside that group 

recursively. In this way, a hierarchy of windows can be packed, resized, or closed with a single 

operation.   

The space-filling tiled approach was applied for more efficient use of screen space. In the 

Elastic Windows, groups of windows stretch like an elastic material as they are resized, and other 

windows shrink proportionally to make space. Users are given flexibility in the placement of sub-

windows in a group. There is no strict horizontal or vertical placement rule within window groups. 

The extent of window operations is limited to the windows in the same group and their sub-

windows. Effects in the upper levels are propagated down to sub-windows recursively.  

11.5  Adaptive interfaces in teleoperation 
Yoneda et al. (1996) developed an interactive adaptation interface for multimedia tele-

operation of a rough terrain crane system. The system has multimodal display that provides force, 

visual, and acoustic information. The described interactive adaptation interface can adapt the 

system to an operator considering his/her skill or knowledge, and psychological state. The  

interface architecture is portrayed visually in Figure 33 and consists of the following elements:  

• I/F: I/F transfers operator’s command (the angle of joystick) to the goal velocity of each 

joint.  

• Operator Classifier: The evaluation of the operator skill is based on the history of the 

payload oscillation and joystick command inputs.  Operator’s psychological state is 

evaluated by the bionical signal –G.S.R.  

• Time constant tuner: Time constant of the operation is regulated by means of the 

Recursive Fuzzy Inference.  

- Multimodal Display: presents information needed for good and easy operation 

based on the state of payload or the jib.  

- Visual display: a) shadow of the payload; b) arrow – indicates the desirable joystick 

control direction to suppress the oscillation; c) bars – bars on the right means the 

current operational angle of the joystick, and the bars on the left means the 
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desirable operational angle of it; d) side view: state of the jib, wire rope, the 

payload oscillation, and goal point in the jib hoist.  

- Acoustic display: a) oscillation sound: the higher tone- the larger amplitude, and b) 

job-hoist sound: the higher tone – faster jib motion.  

- Force display: operator feels force feedback from the joystick according to the 

difference between desirable and actual control input. The force display adapt to 

the operator skill level by changing the strength of the force feed back.  

 

 

Figure 33 - System architiecture (after Yoneda et al. 1996). 

 
Yoneda et al. (1996) also examined the proposed system on a crane simulator 

developed for this purpose. The operational experiments confirmed the effectiveness of the 

proposed crane operational assistance system.   

11.6  Adaptive interfaces for driving 
Piechulla et al. (2003) proposed an adaptive man–machine interface that filters 

information presentation according to situational requirements to reduce the driver’s information 

workload. The filter incorporates a projective real-time computational workload estimator which 

was based on the assessment of traffic situations detected from an on-board geographical 

database. Workload estimates was refined by data from sensors that monitor the traffic 

environment and variables of driving dynamics.  The prototype was applied to the problem of 

mobile phone conversations that impairs driving performance. The prototype system was 

validated in a demonstrator vehicle. The vehicle is equipped with the developer version of a state-

of-the-art adaptive cruise control system (ACC), which is based on a radar sensor, and an 

experimental heading control system (HC) based on computer vision. HC searches for lane 

markings and employs small forces to the steering wheel, which serve as indicators how to steer 
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in order to stay in lane.  

Workload estimation was made with a software module that predicts the driver’s mental 

strain and reduces additional mental workload resulting from displays, signals, and system 

messages by postponing less important messages or canceling those messages altogether. The 

module uses input from car sensors and from an experimental digital map that we call an 

enhanced database for driver assistance systems (EDDAS). Workload estimation was carried out 

in a two-stage process. In stage one, a basic estimate was generated by protectively tracking the 

EDDAS map to identify the oncoming traffic situations and looking up the respective workload 

indicators for these situations. In stage two, this basic estimate is fine-tuned using information 

about dynamic aspects of the driving situation. A map-tracking algorithm matches the vehicle 

position to the EDDAS map and generates a forecast of the route.   

Their experiments showed that prototype system is operational in a demonstrator vehicle. 

Whenever the workload estimate exceeds a threshold value, incoming telephone calls are 

automatically redirected to the telephone mailbox without notifying the driver. An evaluation field 

experiment that employed objective and subjective methods of assessing workload yielded 

promising results in terms of the possibilities of reducing workload by means of the adaptive 

interface.  

12.  ADAPTIVE INTERFACES FOR COMPUTER DATABASE APPLICATIONS 
12.1  Visual access interfaces 

An adaptive interface was used for multi-paradigmatic visual access to databases 

(Catarci et al., 1996). The aim of this development was integration of different interaction 

paradigms into a friendly interface for integrated heterogeneous databases. Visual Query 

Languages (VQLs) based on the visual representations were used to depict the domain of 

interest and express the related requests. Since certain interaction modalities and visual 

representations are more suitable for certain user classes, the adaptive interface was applied.   

The system proposed by Catarci et al. (1996) suggests to the user the most appropriate 

interaction modality as well as the visual representation. The interface is adapted according to the 

user model that provides different visual representations of both data and queries. The visual 

representations were characterized on the basis of the chosen visual formalisms, namely forms, 

diagrams, and icons.  The system architecture consists of following basic elements: 1) Visual 

Interface Manager; 2) User Model Manager; and 3) GMDB & Query Manager. The Visual 

Interface Manager provides multiple data representations (form-based, iconic, diagrammatic, and 

hybrid) and the corresponding interaction modalities together with the possibility of switching 

among them. For each underlying database a window is available, which can be further 

subdivided into several child windows, each one displaying the database according to a specific 
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visual representation. The Visual Interface Manager selects the visual representation most 

appropriate for the user, according to the user model provided by the User Model Manager. Such 

a representation is displayed in the primary child window. The query output, such as text, data or 

image, appears in a separate child window.  

Several visual representations were used in the interface. Form-based representations 

visualize prototypical forms where queries are formulated by filling appropriate fields. 

Diagrammatic representations present various types of concepts available in a model with 

different visual elements. The iconic representation uses sets of icons to denote both the 

objects of the database and the operations to be performed on them. The hybrid representation 

is a suitable combination of the above representations. The combination of visual 

representations is guided by the user needs and the application requirements. Often, diagrams 

were used to describe the database schema, while icons used either to represent specific 

prototypical objects or to indicate actions to be performed. Forms were mainly used for 

displaying the query result.  

The User Model Manager is responsible for collecting data and maintaining a knowledge-

base of the user model components, and provides the most appropriate visual representation and 

interaction modality according to the user skill and needs. Such a model is dynamically 

maintained according to the history of the interactions. The database user model consists of three 

components: 1) the Class Stereotype, 2) the User Signature, and the 3) System Model. The 

Class Stereotype component consists of different classes of database users. User classification 

was based on following dimensions: professional or non-professional, occasional or frequent, 

repetitive or extemporary. Those dimensions are used to determine the user features: frequency 

of the interaction, repetitiveness of the query, structural complexity of the query, and familiarity 

with the database content. The User Signature component contains compressed history of user 

interactions. The Class Stereotype and the User Signature components together constitute the 

individual model of a single user.   

The System Model component is the user's own model of the system organization. When 

the User Model Manager construct and store the user's system model, it can suggest the view of 

the database most appropriate for the user expectations. Moreover, the cost of database search 

can be reduced during querying. The types of visual representations most appropriate for each 

user stereotype were defined. As a consequence, once a user has been identified as belonging to 

a class characterized by a specific stereotype, the system can suggest the visual representation 

appropriate for that stereotype. However, the user has always the freedom of shifting to a 

different interaction paradigm based on another visual representation. The appropriateness of a 

visual representation for a class of users was determined on the basis of the analysis of the 

advantages and disadvantages of the each interaction paradigms exploiting that visual 

representation. The system uses two sets of translation algorithms, one for translating a database 
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expressed in any of the most common data models into a Graph Model Data Base (GMDB), and 

one devoted to implement the consistent switching among different visual representations during 

query formulation.   

12.2  Adaptive interface for generic expert system 
Harrington et al. (1996) described an adaptive user interface developed for a generic 

expert system PESKI (Probabilities, Expert systems, Knowledge, and Inference). PESKI provides 

a user with knowledge acquisition, verification and validation, data mining, and inference engine 

tools. PESKI utilizes a Bayesian knowledge base to provide reasoning power that is not designed 

around a specific application domain. This system allows adaptability to any domain in which it is 

used. Furthermore, PESKI uses multiple communication modes, allowing a user to select the best 

possible way to view and input the information contained in the system. The general purpose 

expert system, such as PESKI, is assumed to have four general types of users: application users, 

application experts, knowledge engineers, and computer scientists.  

The system architecture is composed of three main layers: 1) a Graphical Layer, 2) an 

Intelligent Assistant Layer, and 3) a System Layer. The Graphical Layer creates a graphical work 

environment for the user. Typical interface objects such as windows, menus, and text entry lines 

are combined into a functional display that is customized to meet the user's work environment 

needs. The graphical support is extracted through any number of different interface development 

tools, and choice of the appropriate tool is based on the architectural platform where PESKI is 

being used.  The Intelligent Assistant manages the interface control tasks through a three-layered 

construction: the adaptation layer, the adaptive layer, and the communications layer. All 

transactions between the expert system and the user traverse these three layers for translation 

and management of data.  

The adaptation layer acts as an advisor to the user for accomplishing user-performed 

adaptations. This advisor duty is divided into two tasks: helping the user to make adaptations and 

advising the user on potential adaptations. When helping the user performs an adaptation, the 

adaptation layer provides on-line instructions to the user on how to effect the adaptation. The 

adaptation layer leads the user through the adaptation step by step and gives the user feedback 

during the process. The adaptive layer of the intelligent assistant consists of  those elements of 

the interface that adapt themselves based on perceived user needs, including menus and object 

layout schemes.  The adaptivity layer keeps a log of all interface-enacted adaptations for the 

user's viewing. The communications layer of the intelligent assistant is responsible for managing 

all the data that is passed between the user and the expert system. This layer is equipped with 

the three communication tools: a natural language interpreter, a graphical interpreter, and a 

structured text interpreter. With the available communication tools, the user is given the ability to 

explicitly choose which communication fits their need based on the domain of the data. The 
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System Layer of the architecture allows connectivity between the user interface and the expert 

system through a series of tool drivers, which are the link between the interface and the 

knowledge base, providing the functionality to perform work on the expert system.  

12.3  The PUSH Project 
Höök et al., (1996) applied the metaphor of a “black box in a glass box” to provide the 

predictability and transparency for the adaptive interface. In the Plan and User Sensitive Help 

(PUSH) system, the complex inferences of users’ goals were hide (in the black box) and a quite 

simplified view on what is going on (in the glass box) was presented to the user. The user sees a 

straightforward relation between inferred goal (as unobtrusively presented to the user) and choice 

of adaptation, therefore basis for predictability are provided. The hypermedia page in this on-line 

information system provides a complete description of a particular object structured as ordered 

sequence of typed information entities. Each type of objects in PUSH has its own assortments of 

information entity types that are used to describe an object of this type. A specific feature of 

PUSH is that each information entity is a reasonably big portion of hypertext.   

To protect users from the information overflow and to help them to find a required piece 

of information, the system use hiding, i.e. it presents only those types of information entities about 

the current object that are relevant to the current goal of the user (the goal can be set by the user 

or deduced by the system). At the same time, to keep the adaptation transparent, the system 

maintains the stable presentation order of the information entities and never hides non-relevant 

entities completely: the titles of hidden non-relevant entities are always shown. In the interface, 

each query generates an answer view that contains all information that possibly may fit the query. 

This presentation was named as answer page, and represented as a dynamically generated html-

page. Some of the information is presented in the view as “hidden” pieces of text or graphics, 

represented by the mouse-sensitive words or icons. Other types of icons represent navigational 

maneuvers to other “pages” of information. If the user is not satisfied with the system's decision to 

show or to hide a particular entity, he can collapse or uncollapse the content of the information 

entity by clicking on an icon near its title. The information presented to the user is affected in two 

ways by the selection of a task: 1) the information selection that are deemed relevant for the 

current task are opened at the time an answer is generated, and 2) follow-up questions are 

organized into two-level menus, where the first level contains only a few questions, relevant to the 

current task, and the second level contains all follow up questions.  

12.4  Integrated interfaces for web-based applications 
Espinoza (1996) proposed an integrated, interactive, multi-modal, World Wide Web 

(WWW) interface with an adaptive, information filtering system. The combination of multi-modal 
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interface with adaptive information filtering were applied to solve the problem of information 

overload and to meet user needs.  This interface provided remote access to the PUSH (Plan- and 

User Sensitive Help) system using web access. The interface was described as multimodal since 

its produce both graphics and text, and accepts input as text, menu choice, pointing, and 

selection. Espinoza (1996) created an answer page consisting of graphs and text that the user is 

allowed to manipulate. The users can navigate in the information space by clicking in the graphs 

or by posing questions via menus. They can manipulate the answer generated by the system by 

closing or opening parts of the text. They can also pose follow-up questions on 'hot-words' in the 

text.   

The selection of presented information is based on the user’s information-seeking task, 

which was inferred from their interaction with the system. The user can also actively change the 

assumed task, and thereby control the adaptive behavior of the system. The realization of the 

interactive web-based interface and adaptive information filtering is based on a separation of the 

database and the interface. The database was implemented in SICStus Prolog Objects and 

serves the remote Netscape clients. The interface was realized using dynamically generated 

html-pages, and graphs that are generated at the site of the Netscape client using a transferred 

Java applet.   

Interface architecture 

The answer page is divided into three types of frames. Such frames are subparts of the 

Navigator application window that can be scrolled and resized independently of each other and 

that each contain a web page: 1) textual description of the method consisting of an introduction, a 

description of the underlying purpose behind the method, and some other information pieces not 

visible on the screen; 2) graph with the process in the middle, its super-process, 'subD', sub-

activities, input and output objects; 3)  guide to the textual description, consisting of the headers 

to the information pieces. The ones marked as bold are those currently available in the textual 

description.  The system is interactive on several levels. It is interactive at the interface level, 

allowing the user to manipulate the output from the system. It is also interactive in terms of 

allowing the user to control the adaptivity:  

1) Graphs. The graphics frame serves two purposes. Firstly, it provides a comprehensive 

view of the information space at the current position; the graphs display all objects related 

to the current query as well as their relative positions. This gives the user an overview of 

the domain and also a means for navigation. Secondly, the graphs allow the user to 

navigate in the information space by clicking on objects in the graph. As the user clicks 

on an object the view changes to portray the new object and its neighbors, and at the 

same time the appropriate textual information is retrieved and presented. 

 2) Text. When the user has clicked on an object, they can also get a textual description of it. 
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There are many aspects that may be described: how to produce the object, how to work 

in the process, examples of objects, etc. The user can either ask for a general summary, 

or just one specific aspect.  The users can also manipulate the text frame. They can 

close or open the information entities through clicking in the guide frame next to the 

textual frame, and thereby create an answer page that is better fitted to their needs.  

3) Hot-words. The user can pose follow-up questions on concepts that are crucial to the 

understanding of SDP. The term hot-word is used to denote a marked word in the text 

that is a link to another piece of hypertext.  The list of alternative follow-up questions that 

can be asked about hot-words is presented. The hot-words and their associated follow-up 

questions allow the users to increase their knowledge of SDP. If they are already 

knowledgeable in SDP, they do not have to read irrelevant information about these basic 

concepts.  4) Menus. The user can also navigate by composing questions via menus, 

which is an important alternative to navigation in the graphs. A typical question can be 

'describe a process' which would render the answer page. A more specific question could 

be 'provide an example of process', which would result in an answer page with only one 

information entity open: the example text.    

Several methods were used to create interactive environment for the web: a Java program for 

client side graphics handling, a CGI program for dynamic generation of web pages, as well as an 

underlying adaptive database, implemented in SICStus Prolog objects.   

System architecture  

The system architecture consists of following elements: 1) Netscape Viewer, 2) Page 

Generator, 3) User Modeling Component, and 4) POP knowledge database. Page Generator 

sends the query parameters to the POP (the database part of the PUSH system) Prolog program. 

The user's information seeking task was used, as a tool for determining which information entities 

would be most relevant to the user in a specific situation. The hierarchy of information seeking 

tasks was constructed on the basis of a task analysis on user's behavior in their daily work 

situation. A combination of a user-controlled, and self-adaptive approach to the determination of 

the current user task was used. A self-adaptive approach is one in which the whole adaptive 

process is done by the system alone: the system initiates, proposes, decides, and executes the 

adaptive behavior. The users determine with which task they are initially working. The plan 

inference (i.e. inferring the users' underlying goal from their actions at the system) is applied 

continuously to update the user’s task. The user can at any time change the inferred task to some 

other task.  
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12.5  Adaptive hypermedia applications 
Höök et al. (1997) proposed a service infrastructure for adaptive hypermedia called 

edited adaptive hypermedia. The service involves two types of actors, information brokers and 

information users, with their respective tasks of collecting, adapting, and reading the information. 

It was suggested that a solution where individual user interests and preferences are stored in 

user profiles, available both to the information broker and to the information user. The outgoing 

information is annotated as to allow for individual adaptations for the information user. Finally, the 

information user's reading behavior is monitored and feedback is provided to the information 

broker through the user profile. Höök et al. (1997) proposed to use user models in two ways in 

the edited adaptive hypermedia service. Firstly, information brokers apply user models to select 

and filter out relevant information to the reader community, and to structure and annotate the 

distributed information. Secondly, the information user environment maintains a model of the 

individual user to provide useful adaptations in the distributed information. These two types of 

models interact in complex ways. The end user environment only can adapt using such 

annotations that the information broker has provided. In a closed information domain, an 

appropriate selection of annotations can be decided upon in advance, but brokers must be 

provided with feedback on how well the selected annotations worked in practice.  

Öquist and Goldstein (2003) described the adaptive RSVP that mimic the reader's 

cognitive text processing pace by adjusting each text chunk exposure time in respect to the text 

appearing in the RSVP text presentation window. The Rapid Serial Visual Presentation (RSVP) 

technique is used for dynamic text presentation. RSVP presents the text as chunks of words or 

characters in rapid succession at a single visual location. This format offers a way of reading texts 

on a very limited screen space. The exposure time of each text chunk is calculated on basis of 

the set presentation speed and on how much that can be displayed in the text presentation 

window. The adaptivity of RSVP is based on the eye-mind hypothesis (Öquist et al., 2003) i.e. 

that the eye remains fixated on a text chunk as long as it is being processed, the needed 

exposure time of a text chunk can be assumed proportional to the predicted gaze duration of that 

text chunk.  

Öquist et al. (2003) developed two adaptive algorithms in order to decrease the task load. 

The first algorithm adapts the exposure time to the content of the text chunks whereas the second 

also looks to the context in the sentences.  In content adaptive mode, the exposure time for each 

text chunk is based on the numbers of characters and words that are being exposed for the 

moment. In context adaptive mode the exposure time for each text chunk is based on the 

following: the result of content adaptation, the word frequencies of the words in the chunk and the 

position of the chunk in sentence being exposed. The width of the RSVP display window was 25 

characters wide with the text presented left justified in a 10-pt. sans-serif typeface.   

Brusilovsky (1996) described the ELM-ART (ELM Adaptive Remote Tutor) system which 
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is a web-based Intelligent Tutoring System (ITS) to support learning programming in Lisp. In 

ELM-ART several adaptive techniques were applied to support students in navigation and 

learning of course materials.  ELM-ART was considered an on-line intelligent textbook with an 

integrated problem-solving environment. The course material contained in ELM-ART is stored in 

hypertext form. ELM-ART provides many methods for browsing the course. The system uses two 

adaptive hypermedia navigation support techniques- adaptive annotation and adaptive sorting of 

links.  

Adaptive annotation uses visual cues (icons, fonts, and colors) to show the type and the 

educational state of each link. The system maintains an individual permanent model for each 

registered student. The student’s version of ELM-ART uses to distinguish several educational 

states for each page of material (including problem, example, and manual pages): the content of 

the page can be known to the student, ready to be learned, or not ready to be learned (the latter 

case means that some prerequisite knowledge is not yet learned). The icon and the font of each 

link presented to the student are computed dynamically from the individual student model. They 

always inform the student about the type and the educational state of the node behind the link. 

Adaptive sorting is used to present similarity links between cases. Since the system can measure 

the similarity between each two cases, it can also sort all cases related to the current one 

according to the similarity values. Links are presented in sorted order - the most relevant first - so 

the student always knows what the most similar cases are.  

The system also provides the Intelligent Problem Solving Support. ELM-ART predicts the 

student way of solving a particular problem and finds the most relevant example from the 

individual learning history. Answering the help request (e.g. show example), ELM-ART selects the 

most helpful examples, sorts them according to their relevance, and presents them to the student 

as an ordered list of hypertext links. The most relevant example is always presented first. 

Furthermore, the page adaptiveness was applied. All pages presented to the user are generated 

adaptively “on the fly” when the user requests them. To generate pages, the system uses the text 

of the course, and knowledge about the structure of the course. When assembling a page of the 

course, ELM-ART extracts the text of the requested unit from the HTML file and generates the 

rest of the page (header, footer, hierarchy links and content based links) from the knowledge 

base. The situation with reference manual pages is even more flexible, because for most of them 

not only links, but the content itself is generated from the knowledge base. With this approach, all 

adaptive features of ELM-ART presented above such as additional headers for not-ready-to-be-

learned pages or adaptive annotation of links according to their educational state can be easily 

implemented.  
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12.6  Auto-adaptive multimedia interfaces 
An Auto-Adaptive Multimedia Interface (AAMI) was proposed for process control (Viano 

et al., 2000), by using the general-purpose framework for applications in the Electrical Network 

Management and in the Thermal Power Plant Supervision. The described work was carried out 

in frame of the European ESPRIT project: AMEBICA. AMEBICA is a generic adaptation system 

that maps events of discrete levels of significance - at the input – to appropriate rendering 

characteristics at the output. AMEBICA has two interfaces: 1)  the Process Model Agent,  and 

2) the Abstract Rendering Interface  that allow it to interact with its environment.  The Process 

Model identifies domain specific occurrences in the operator or system environments and 

triggers AMEBICA. The Abstract Rendering Interface takes general commands from AMEBICA 

and renders them in domain dependent representations. The interface architecture consists of 

the following components:  

• Process Model Agent, which monitors and acts on the process information using its 

knowledge of the process to translate system dependent calls to AMEBICA calls.  

• Media Agent that is responsible for rendering of a stream of process information. 

(contains design time mappings),.  

• Rendering Resolution Agent, which interacts with the Human Factors Database, 

Environmental Agent and Operator Agent to decide upon the best renderings for a certain 

situation.  

• Environmental Agent that captures information on the current environmental conditions in 

the control room.   

• Human Factors Database; a set of key HCI heuristics used to help decide the most 

appropriate rendering.  

• Presentation Agent, which has a continuously updated view of resource usage on the 

interface in all media.  

• Media Allocator Agent that makes the final decision on the choice of rendering, based on 

interactions with Presentation Agent.  

• Operator Agent that monitors and logs the operator’s actions (mouse clicks and keyboard 

operation).  

Adaptation rules are shown in the following matrix. 
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Operator  Response  
Process Status 
Normal  

Process State 
Disturbed High 
Information Rate  

Process State 
Disturbed Low 
Information Rate  

 OK  OK  OK  

Normal  Process triggering  Process triggering  Process triggering  

 only  only  only  

Delayed (relative to 

expected response)  

(1) Inattentive 

Accentuate 

presentation  

(4) Overloaded. Filter 

information Simplify 

presentation  

(7) “Frozen” Repeat 

recent information. Try 

alternative 

representation  

Erratic (occasionally  (2) Inattentive  (5) Overloaded.  (8) Partial loss of  

wrong displays or  Accentuate  Simplify displays,  comprehension  

commands)  presentation (specific) Remove information  Switch modality  

Disorganized 

(constantly wrong 

display or commands)  

(3) Confused, loss of 

control Go to overview 

presentation  

(6) Sever loss of 

control “Voice of God” 

(9) Complete loss of 

comprehension. Go 

one level up. 

Summarize 

information  

 

A set of conditions that triggers adaptation was also proposed as a function of the deviations 

related to the human operator, machine, and the process. For a process, three distinct system 

states were identified: 1) normal process status, 2) process state disturbed with high information 

rate, and 3) process state disturbed with low information. The system identifies the operator 

deviation states on the basis of the inadequate operator responses. The following set of the 

operator states were differentiated: 1) normal state, 2) delayed (relative to expected responses); 

3) erratic (occasionally wrong display or commands), and 4) disorganized (constantly wrong 

display or commands). The following matrix of adaptation rules were developed on the basis of 

the sets described in the table above.  The following adaptation techniques were developed for 

the prototype system:  
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• Highlighting of relevant information according to the actual "scenario". Dynamical 

detection of the most pertinent and relevant information should manipulate the display 

parameters to highlight it.  

• Adaptation of the display space organization and optimization according to the current 

"scenario".  

• Adaptation of the information representation by selection and manipulation of 

presentation modalities. Incoming information can be displayed by using a set of 

alternative modalities selected on the basis of the current "scenario" and of the interface 

status.  

• Time organization. The adaptation action follows the evolution of the "scenario" over 

time.  

 

 

12.7  Adaptive interface for knowledge retrieval system 
Nguyen et al. (2000) developed an active interface prototype for the Knowledge Retrieval 

System. The prototype under development was planned to test on the Unified Medical System 

(UMLS). The interface agent is based on the Core Interface Agent (CIA) architecture. The 

purpose of this architecture is to provide assistance to the user by maintaining an accurate model 

of the user’s interaction with the target system environment. Interface agents autonomously react 

to changes in user intent as well as changes to information sources and proactively and 

dynamically constructs the appropriate queries for the various (heterogeneous) source. The 

adaptive interface suggest to the user additional related information. A user interacts with a target 

system (e.g. a medical database querying system), typically via direct manipulation interface such 

as through menu selections, mouse clicks, and button pressed. The user’s interaction with the 

target system is reported to CIA architecture as observations. The interface agent uses these 

observations to infer what a user is doing within the environment. Based on the knowledge of the 

environment that the active user interface has and the user’s current interactions with the system, 

the interface agent determines the user’s goal with the highest expected utility and offers a 

suggestion to the user via the target system.  

The user model consists of three components: 1) a user profile; 2) Bayesian network 

model; 3) utility model.  The user profile is used to store the static knowledge about the user, 

including his demographic data, and skills. The Bayesian network model was applied to capture 

the uncertain, and causal relationship between the preconditions, goals and actions (the goals 

were decomposed in multiple actions with many pre- and post-conditions). The Bayesian network 

model consists of the action network and the ontology network. The action network was built from 

the user’s natural language queries and relevant feedback on the results given by the system. It 

was maintained on regular basis by a fading technique. The action network captures the user’s 
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interests, which are controlled in the ontology network. When the action network is faded, the 

user’s actions that persist over time are inferred and copied to the ontology network. The ontology 

network captures the information regarding the user’s long-term interests as well as the 

information regarding the interrelation among the subjects that the user is looking for.  

The utility model was developed to capture the user’s utility for having the active user 

interface performing an action on his behalf to achieve a goal. It was used to support the 

shifting in user long-term preferences and interests.  The utility model contains: 1) the utility 

function over a set of requirements for active user interface (UAUI_requirement); 2) a multi-

attribute utility function over a set of metrics that measure the adaptivity, autonomy, 

collaboration, and robustness of the active user interface,; and 3) the utility function over a set 

of requirements for capturing the user long-term interests and preferences 

(ULONGTERM_requirement). This function was defined over a set of metrics that measure the 

scope of knowledge, the rate of changes, the generality and specificity of the user's studying 

style.   

In described implementation of the user model, authors assumed that both of these utility 

functions needs to look backwards in history to compute the utility function or an agent that 

extends the user’s original queries by taking only the positive or both positive and negative 

relevant feedback. The decision concerning how the interface agent will offer assistance and if 

the observation will be included in the user’s long-term interest is based on three thresholds. One 

of thresholds is for offering assistance, second for autonomously performing action on the user’s 

behalf and the third one for the long-term interests. The thresholds definition was based on the 

expected utility function.  When the UAUI_requirement falls below the threshold of utility 

requirement, the active user interface requests “help” from a set of correction adaptation agents. 

The correction adaptation agent that is most likely to improve the interface agent’s requirement 

utility will get the chance to correct the user model.  

12.8  Adaptive interface for medical data management 
Dynamic hot-lists were proposed to use in adaptive interface application for data entry of 

electronic medical records (EMR) in a general practice (Spenceley et al., 1996). The hot lists 

(split menu) offers selection of frequently used items in a top section of the menu and then gives 

the remaining items in a bottom section. A split menu is named as intelligent when its top section 

alters its values to suit factors of the current context. In this application, the hot list creation was 

based on the task model formed by machine learning from the 3085 records of visits  (Adelaide 

General Practice database). In the database, the patients’ problems were coded using from the 

GP’s electronic medical records system.    

Conditional probability model were used for anticipation of drugs treatment based on the 

co-occurrence of drugs with problems. In the training phase, matrix giving the probability for each 
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drug given each problem was computed from a subset of the database. The matrix constitutes 

the task model. All drugs were ranked in descending order of probability based on the patient’s 

already-specified diagnoses.  The 12 most probable drugs will be shown as the hot list and then 

list all drugs alphabetically beneath. For situations where one patient has multiple diagnoses it 

would be ideal to look at the frequency of co-occurrence of particular drugs with specific sets of 

diagnosis.  An approximation mechanism from the fuzzy set theory for such joint conditional 

probability was used:  

P(z
1 

v z
2 

v ... v z
n
) ≡ max{ P(z

1
),P(z

2
),...,P(z

n
)} 

The definition above was used as max operator for scoring candidates in the hot list. If a 

patient has problems z1, z2, z3, drugs will be ordered according to their highest probability of 

occurrence with on of the three problems at the hot list. The ‘add’ and ‘multi’ operators were also 

considered, where each drug where scored by sum or product respectively, of its probabilities 

with each of the problem present in the record. The ‘add’ operator rewards associations of drugs 

with problems with cumulative fashion, while the ‘multi’ operator penalizes drugs that are weakly 

associated with any of the problems present. Hit rate index were used to evaluate the model in 

the simulation. Hit rate is the percentage of the drug from the hot list selected by user. The results 

of the simulation revealed that: 1) the multi-method is inappropriate for the data, 2) small but 

consistent advantage of the add method over the ‘max method’, and 3) the best hit rate- 68%  

12.9  Adaptive user interfaces for stock trading 
Yoo et al. (2003) developed the Stock Tracker, an adaptive user interface that 

recommends stocks based on an individual’s trading profile. The system utilizes this profile to 

rank stocks, and it revises the profile based on traces of user behavior. Authors emphasized that 

stock tracking is a temporally sensitive task that requires the continuous monitoring of numeric 

variables to detect trends or changes over time. This requires identifying features that capture 

these trends and employing techniques to gather such information for the user. The Stock 

Tracker is built on the client-server architecture, with information filtering, record keeping, and 

adaptation performed on the server. The user interface and related computing are done on the 

client (Figure 34).    
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Figure 34 – Architecture of the Adaptive Stick Trader (after Yoo, 2003) 

 

The server contains: 1) the data processing unit, 2) recommendation module, 3) user 

modeler, 4) information manager, 4) communication unit.  The data processing unit converts raw 

input (i.e., current stock readings and historical trading information) into reports that contain buy 

and sell recommendations for the user. It relies on the recommendation module to make 

appropriate suggestions for each stock based on individual user profiles. The user modeler 

constructs these profiles based on user responses to previous recommendations. The information 

manager records traces of a user’s interactions with the system and also keeps track of user 

portfolios.  The communication unit manages the information into and out of the server.   

A client contains: 1) a communication unit, 2) a graphical user interface (GUI) component. 

The communication unit performs activities that correspond to the server’s communication unit. 

The GUI presents all reports to the user and accepts commands such as buying/selling stocks 

and viewing portfolios, along with requests for additional financial information on particular 

companies.  The system simulates trading using historical S&P 500 market data; it mimics a real 

stock-trading scenario by generating information one (simulated) day at a time and letting a trader 

decide the stocks, if any, to buy and/or sell on each day.  

The Stock Tracker includes a graphical interface for presenting stock information, making 

recommendations, and accepting the user’s trading requests. The system’s ranked list of 

recommendations appears in the upper left. Details about the highlighted stock are presented in 
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the interactive graph in the bottom half of the window. The upper right presents a summary of the 

current stock, together with the system’s recommendation and action buttons for the user to buy 

or sell the stock.  The Stock Tracker’s interface was designed to obtain useful feedback through a 

user’s natural interaction. A user can provide positive feedback by purchasing a stock that the 

system recommends he should buy. By selling the same stock, the trader gives negative 

feedback. Because more explicit feedback is also helpful, this facility was also provided, but the 

Stock Tracker can adapt its behavior to users even without such information.  

The system bases recommendations on a technical analysis called the Moving Average 

Convergence Divergence (MACD) that examines the difference between long-term and short-

term moving averages to identify crossing points. These points indicate market turns and thus 

correspond to opportunities for buying or selling stock.  MACD was converted into decision 

rules for recommending different actions: buy, buy warning, sell, sell warning, and do nothing. 

Each decision rule consists of a set of numeric constraints on temporal stock-trading attributes, 

such as the rate of increase in the long-term moving average or the difference between the 

long-term and short-term averages. A decision rule applies when all of its constraints are 

satisfied—that is, the value of each corresponding attribute satisfies the constraints with the 

MACD defines the form of the constraints.  The Stock Tracker alters its recommendation 

behavior by incorporating different threshold values.  

The Stock Tracker achieves personalized recommendation through the use of individual 

user profiles that capture trading preferences. A profile consists of four binary classifiers, one for 

every action other than do nothing, each of which renders a membership decision on each item 

(i.e., whether it is a positive instance of the class). The system builds classifiers from training 

examples extracted from traces of the user’s interactions. The user can either accept or reject 

each recommendation. An acceptance indicates that the recommendation was correct and is thus 

a positive example of the corresponding classifier. Similarly, a rejection produces a negative 

example. The system also uses positive examples for one classifier as negative examples for 

others. Although there are many well-known supervised induction algorithms, we opted to devise 

a new, more efficient algorithm that exploits the fixed structure of the user model (Figure 35).  
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Learn (examples)  

  For each classifier in {buy, buy warning, sell, sell warning}  

      LearnOne (classifier, examples, classifier’s constraints)  

LearnOne (classifier, examples, constraints) 

• Sort examples in increasing order according to the attribute value of the next 

constraint in constraints  

• Identify threshold candidates for splitting the examples into positive and negative 

regions  

• Set constraints threshold of classifier to the best split among candidates based on  

Evaluate (examples, split) 

•  LearnOne (classifier), Subset (examples, split), Remaining (constraints)  

Figure 35 – Example of fixed structure of user model 
 
 

Each decision rule (classifier) consists of a set of constraints, each of which corresponds 

to a particular numeric attribute. Every constraint specifies a threshold on the attribute value, 

above (below) which the constraint is satisfied. The goal of the learning algorithm is to find a set 

of thresholds that will result in recommendations consistent with the user’s actions. The examples 

were ordered according to increasing attribute values, to evaluate candidate thresholds for a ≥ 

constraint based on how well they predict positive examples above the threshold and negative 

examples below it, and similarly for ≤ constraints. Also, since the constraints form a conjunctive 

set of conditions, thresholds for remaining constraints need only be considered, for examples in 

the region that satisfies the constraint.  

The authors of this article found that the F measure, a weighted combination of precision 

and recall, provided the best behavior for evaluating candidate splits.  Precision indicated the 

probability that a positive instance. labeled as positive by the classifier. is truly positive, whereas 

recall gave the probability of correctly identifying all positive instances. In application, precision is 

the number of positive examples in the correct partition divided by the number of instances in that 

partition. Recall is the number of positive instances in the correct partition divided by the number 

of positives in both partitions. The learning is conducted online, that is, after every interaction with 

the user that yields positive or negative examples, the user modeler updates the user profile. This 

lets the Stock Tracker adapt quickly to individual traders. To give the system a reasonable 

starting point, a default model was employed, corresponding to the profile of an average user, 

which was generated from a default training set that represented feedback from such a user. The 

weight attached to these default cases allowed varying the degree to which the system relied on 

them during its model construction.  
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13.  CONCLUSIONS 
Contemporary applications of the adaptive human-computer interfaces are spread across 

a wide rage of different areas, including expert systems, knowledge system databases, World 

Wide Web pages, tutoring systems, help systems, etc. Currently, the main focus of most of the 

applications available in the subject literature is on the human user model construction, the 

control mechanisms, and technical aspects of the interface architecture. However, the cognitive 

aspects of the user models applied to drive the adaptation are in most cases intuitive and 

underdeveloped. Furthermore, the knowledge about human information perception and 

processing perspectives is seldom considered in the design of and information presentation on 

the available adaptive displays.  

In general, one can distinguish four generic elements common to all adaptive 

interfaces, including: 1) the user model; 2) an adaptation (control) mechanism; 3) a system for 

assessing the user state, and/or user-interface interaction state, and/or situation/task 

demands; and 4) the domain model. It should be noted that in some applications the user 

model consists of two parts: generic or standard user model, and specific (for each user) 

model (that maintains the specific user features).  

Although, there are quite a large number of theoretical papers discussing the above 

issues in reference to the adaptive interface, these papers are predominantly from the human- or 

user- oriented areas.  At the same time, the literature regarding the design and construction of  

adaptive interfaces is predominantly from the domain of computer science. These differences are 

reflected in the variety of names used to designate the adaptive interfaces. An adaptive interface 

implies an adaptation to the user in the human/user oriented areas, while an intelligent interface 

emphasizes the interface intelligence in the context of computer science and engineering.    

The information presentation in adaptive interfaces highly depends on the type and 

area of application. However, the aims of all adaptive techniques applied are obviously the 

same: to decrease the potential for or eliminate information overload, to present relevant 

information at relevant moments in time, and finally to assist and improve user performance.   

Some common generic factors that influence information presentation in adaptive 

interfaces can be found. The most important factors that determine the way information is 

presented are several changing over the time variables such as: user goals, state of user - 

interface interaction, and task demand and/or situation demands. Two type of the interface 

adaptability can be noticed: 1) dynamic (active), changing over the time (in some environments 

very rapidly): adaptation to the effects of interactions between user actions and, task /situation; 

and 2) passive (inactive): adaptation to the level of the user performance /ability/ knowledge 

/workload, type of the situation/task.   

In case of the passive adaptation the user/task/situation types can be predefined in the 

interface knowledge base or in models. The dynamic/active adaptation demands analysis of 
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changing over the time interactions, history of interaction, and information important for these 

interactions. In some applications with dynamic/active adaptivity the real time assessment of user 

and/or situation were applied.  The following user assessment indices were applied (assessment 

of the user workload/ability/state): 1) direct physiological assessment: EEG, EKG, GSR, HR, and 

2) indirect, situation based assessment of user information needs or workload and user 

actions/input based.  

The above review of literature indicates that aircraft flight and other dynamic systems 

control design has been to a large extent dominated by the classical system control techniques. 

While this tradition has produced many highly reliable and effective control systems, recent years 

have seen a growing interest in applications of robust, nonlinear, adaptive control theory. The use 

of artificial intelligence computational techniques has dominated in the last decade of control 

research. This development has been motivated from the desire for enhanced agility and 

functionality demands that the aircraft or other tactical system perform over an increased range of 

operating conditions characterized by dramatic variations in dynamic pressure and nonlinear 

dynamic phenomena. As it has been seen, artificial intelligence techniques have been effectively 

used either individually or in combination for general aviation, military, or space aircraft attitude, 

altitude, fault tolerance, angle of attack and other aerodynamic controls. At the same time, these 

techniques have been successfully implemented in underwater vehicles, weapon systems, and in 

tactical decision making. However, the review shows that many of the endeavors urge for future 

research either to overcome limitations in the technology that is currently being used or to 

develop and implement the technology in the new, challenging real world applications. 
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APPENDIX A.   

 
 

Reference Type of control Application Input Output Architecture 
Zhou et al., 
1997  

Flight control  Hypersonic 
transporter  

1. Angle of attack  
2. Pitch rate  

Stability in 
hypersonic 
region  
Robustness 
across flight 
envelop 

Fourteen fuzzy 
inference rules  
Max-min 
composition 
algorithm 

Schram et al., 
1997  

Failure-tolerant 
control  

Civil aircraft 
simulation  

Measurements:  
1. Sensor failure  
2. Actuator failure 

Flight path:  
1. Lateral 
deviation 
2. Roll angle 
3. Sideslip  

Multiple Fuzzy 
Controllers: 
1. Dynamic 
filter and 
scaling  
2. Fuzzification  
3. Inference 
mechanism  
4. 
Defuzzification  

Vachtsevanos 
et al., 1997  

Flight control 
and mission 
planning  

Autonomous UAV  Route Planner:  
1. Distance  
2. Hazard 
3. Maneuverability 
Navigation:  
1. Waypoints  
2. Energy management 
Fault-tolerance: 
1. Sensor failure  
2. Component failure 

Longitudinal 
Lateral 
Vertical 
Yaw  
Pitch 
velocity and 
control  

1. Mission 
Planner:  
- Supervisory 
controller 
- Route planner 
 - Fault 
tolerance  
- Fuzzy 
navigator  
2. Flight 
controller 

Oosterom and 
Babuska, 
2000 

Implementation 
of virtual sensor 
for normal 
acceleration 

Small commercial 
aircraft 

Dissimilar consolidated 
sensor readings:  
1. Longitudinal motion 
2. Sensor noise  
3. Atmospheric  
turbulence 

Normal 
acceleration  

Data 
Generation  
-Training data  
- Validation 
data  
2. Fuzzy 
clustering  
identification  
-Takagi-
Sugeno  
model 

Napolitano et 
al., 1999  

Development of 
virtual flight data 
recorder 

Commercial aircraft Pitch, bank, and 
heading angles, 
altitude, airspeed, 
accelerations 

Control 
surface 
deflections 

1. Neural 
network 
simulator: 
-Multilayer  
- Back 
propagation 
learning 
algorithm  
2. Fuzzy Logic  
- Fuzzification 
- Inference  
- Composition  
- 
Defuzzification 

Burdun and 
Parfentyev, 
1999  

Intelligent flight 
support  

Intelligent pilot-
vehicle interface, 
automatic flight-
envelope protection, 
autonomous 
(robotic) flight 
including multiple 
vehicle systems, 
and resolution of 

Pilot errors, 
nonstandard flight 
profile or maneuvers, 
mechanical failures, 
wind and turbulence, 
weather and extreme 
atmospheric conditions, 
electromagnetic 
discharges, extreme 

 1. Flight event  
2. Elementary 
situation  
3. Flight 
situation 
scenario  
4. Fuzzy 
situation tree-
network 
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conflicts in close 
free-flight air space 
(Potential) 

runway conditions   - Linguistic 
flight variables  
- Fuzzy 
measurement 
scales 
 - Fuzzy 
situations 
 - Fuzzy 
Transitions  
- Fuzzy 
branches 

Jeram and 
Prasad, 2003  

Active control 
system  

Rotorcraft  1. Dominant frequency,  
2. Phase lag, and  3. 
Actuator rate limit  
4. Friction,  
5. Radius of motion 
6. Bobweight dynamics 

Pilot induced 
oscillation  

1. Cockpit 
control  
2. Aircraft state 
3. Actuator 
position  
4. Main 
frequency 
selection  
5. Fuzzy 
Inference 
system 
6. PIO 
estimation 

Rong, 2002  Optimal and 
conflict-free flight 
path guidance  

 1. Weather  
2. Traffic  

Flight path  1. Executive 
agent  
- Rule-based 
arbitrator  
- Traffic conflict 
evaluator 
2. Weather 
agent 
3. Traffic agent  

Wu et al., 
2003 

Intelligent and 
autonomous 
flight control 
system  

Re-entry space 
vehicle  

1. Pitch  
2. Roll  
3. Yaw  

Flight 
trajectory: 1. 
Angle of 
attack  
2. Sideslip 
angle  
3. Bank 
angle  

1. Fuzzy 
controller  
2. Aerodynamic 
inversion  
3. X38 
simulator  
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APPENDIX B.   

References  Type of 
control  

Application  Input  Output  Architecture  

Caldwell et 
al., 1998  

landing 
approach 
navigation aid  

Commercial 
aircraft  

1. Autopilot: 
 - Distance - 
Bearing  
- Heading – 
Airspeed 
 - Altitude  
2. Approach:  
- Inbound course 
- Turn course  
- Distance  
3. Wind Settings: 
 - Velocity 
 - Direction  

1. Drift heading  
2. Relative bearing  

Feed forward network 
One hidden layer with 
three nodes Back 
propagation learning 
algorithm  

Napolitano 
et al., 1999  

Fault-
tolerance 
control  

Military 
aircraft  

1. Elevator, 
aileron, and  

rudder  
2. Pitch, roll, and 

yaw rates  

Sensor and actuator 
failure:  
- Detection  
- Identification 
 - Accommodation  

1. Actuator -NN to 
estimate  
angular velocity 
(detection) 
 - Failure identification  
through cross-correlation 
functions  
- NN controllers for pitch, 
roll, and yaw controls  
2. Sensor  
-A main NN (MNN) 
 -A set of ‘n’ NNs,  
decentralized for  
‘n’ sensors  

Manry et al.,  near optimal  
helicopter 
flight  
load synthesis  
(FLS)  

Helicopter  1. CG F/A load 
factor  
2. CG lateral 
load factor  
3. CG normal 
load factor  
4. Pitch Attitude 
and rate  
5. Roll attitude 
and rate  
6. Yaw rate 
7. Corrected 
airspeed  
8. Rate of climb  
9. Longitudinal 
cyclic stick 
position  
10. Pedal 
position  
11. Collective 
stick position  
12. Lateral cyclic 
stick position  
13. Main rotor 
mast torque  
14. Density ratio  
15. F/A 
acceleration, 
transmission 
 16. Lateral 
acceleration, 
transmission  
17. Vertical 
acceleration, 
transmission  
18. Left hand 

1. Fore/aft cyclic 
boost  
tube oscillatory axial 
load (OAL) 
2. Lateral cyclic 
boost tube OAL  
3. Collective boost 
tube OAL  
4. Main rotor (MR) 
pitch link OAL  
5. MR mast 
oscillatory 
perpendicular 
bending st.  
6. MR yoke 
oscillatory beam 
bending sta.  
7. MR blade 
oscillatory beam 
bending sta.  
8. MR yoke 
oscillatory chord 
bending sta.  
9. Resultant mast 
bending sta. position 

1. Modular neural  
network  
2. Cramer-Rao  
Maximum 
 a -posteriori bounds  
3. Multilayer perceptron 
network 
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forward and aft 
pylon links  
19. Right hand 
forward and aft 
pylon links 

Yan et al.,  
1999  

Fault tolerant  
flight 
controller  

Fighter 
aircraft  

1. Pilot pitch rate 
2. Velocity 
commands  

1. Pitch rate  
2. Actuator 
sluggishness  
3. Velocity  

1. PID controller  
2. MRAN controller  
3. Plant  

Urnes et al., 
2001  

Damage 
adaptive flight 
control system  

Fighter 
aircraft  

1. Mach  
2. Altitude  
3. Alpha  
4. ABS  
5. Collective 
Stab  
6. Collective 
rudder  
7. Differential 
aileron  
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APPENDIX C.   

 References  Type of control  Application  Input  Output  Architecture  
Oussedik et  
al., 2000  

Air traffic route  
generator  

Air traffic 
control  

1. Airspace beacons  
2. Airspace sectors  

Minimum distance  
alternative routes  

1. Coding  
2. Mutation  
3. Crossover  
4. Sharing  

Austin and 
Jacobs, 
2001  

Longitudinal 
flight control  

Hypersonic 
aircraft  

1. Attitude  
2. Flight trajectory  

Configure the control 
surface, along with a 
fixed and preset 
control structure  

1. Initial evolutionary 
reproduction process  
2. Floating point 
encoding  
3. Sigma-truncation 
and linear scaling 
fitness function  
4. Uniform arithmetic  
crossover with  
adaptive direction of 
mutation  

Mulgund et 
al., 1998  

Optimization of 
large-scale air 
combat tactics  

Fighter 
aircrafts  

1. A set of 
commonly-used 
element and division 
formation along with 
underlying tactical 
maneuvers  
and attack tactics 2. 
A set of principles for 
aggregating the 
small formation  

tactics for large  
engagements  

1. Individual 
maneuverability 
 2. Formation tactics  
3. Division tactics  

1. Stochastic coding  
2. Tactics 
implementation  
3. Fitness function on 
the basis of  
friend/enemy loss, 
separation criteria, 
relative advantage, 
and risk assessment  

Marin et al., 
1999  

Guidance   Unmanned 
aerial 
vehicle  

Terrain data on 
vegetation, slope,  
hydrology, roads, 
and  
obstacles  

Detection and 
monitoring of targets  

SAMUEL evolutionary 
learning system  

Nyongesa et  
al., 2001  

Control of 
delay- 
time of anti-air 
missile 

Ground 
anti-air  
missile 
vehicle  

1. Missile angle  
2. Missile distance  

Optimization of delay  
time of fuze to kill the 
target 

1. A set of eight  
functions  
2. A set of three 
terminals  
3. Genetic 
programming 
parameters; 
population, generation, 
mutation, migration 
frequency and rate 
 4. Fitness as success 
predicate 
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APPENDIX D.   

  References  Type of control  Application  Input  Output  Architecture  
Zein-Sabatto and 
Zheng, 1997  

Intelligent flight 
control  

XCell-30 mini 
helicopter  

1. Flight altitude 
2. Rotor speed  
3. Blade angle 
4. Aerodynamic 
theory  

1. Rotor speed  
2. Blade angle  

1. A three-layer 
feedforward NN: 
to learn 
helicopter 
dynamics  
2. Genetic 
algorithms: to 
optimize 
coefficients for 
PID  controller  
3. PID controller: 
blade angle 
control  
4. Fuzzy 
controller: rotor 
speed control  

Idan et al., 2001  Fault-tolerant 
control  

Numerical model 
of B 777  

Aerodynamic and 
propulsion 
actuator failure 
information  

Control of: 
 -Speed 
 -Pitch rate  
-Thrust  

1. Online Neural 
network to learn 
fault tolerance  
2. Pseudo-control 
hedging to 
address 
adaptation 
difficulties  
3. Nonlinear 
single hidden 
layer NN to 
compensate for 
inversion error  

Joshi and 
Valasek,  
1999  

Bang-bang type 
vortex flow  
control  

X-29A  1. Angle of attack 
2. Sideslip angle  
3. Deflection  
4. Bank angle  
5. Heading angle  

1. Close-loop 
system 
performance  
2. Activity level of 
VFC nozzles  
3. Ease of 
controller  
synthesis  
4. Time required 
to synthesize 
controller  

1. Model 
predictive 
variable structure 
2. Fuzzy logic  
3. Neural 
networks  

Melin and  
Castillo, 2002  

Aircraft dynamics  
control  

General  1. Wind velocity  
2. Inertia moment 

1. Altitude  
2. Trajectory 
estimation  

1. Fractal module 
2. Fuzzy rule 
base for  
modeling  
3. NN for control  
4. NN for 
identification  
5. Aircraft 
dynamic  
system 

Kewley and 
Embrechts (1998  

Positioning 
military combat 
units for optimum 
performance  

Military ground 
units  

1. Organization 
and course of 
action data  
2. Vehicle data  
3. Map data  

Estimation of 
enemy and 
friendly losses  

1. A simulation 
model to 
evaluate 
solutions 
 2. A fuzzy logic 
module to map 
simulation 
outputs  
3. A genetic 
algorithm to 
search the terrain 
for near-optimal 
combination of 
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unit  
positions  

Ganesh, 1999  Uncertainty 
management  

Submarine  1. Platform 
identification  
2. Normalized 
blade-rate 

Contact speed  1. Two input 
single output 
speed fuzzy 
inference system 
2. Target motion 
analysis  

Wills et al., 2001  Control of 
complex system  

X-cell helicopter   1. Outer loop:  
flight trajectory  
2. Inner loop: 
pitch, roll, and 
yaw  

1. High level 
control: situation 
awareness, 
reactive control, 
and model 
selection  
2. Mid level 
control:  
mode transition  

3. Low level 
control:  
stability and 
control, and 
augmentation  
system  
4. Open control 
platform with 
multiplayer 
application  
programmer 
interfaces  
5. PID controller  
8. Neural network  
based controller 

Leitner et al., 
1998  

Trajectory 
tracking control  

Rotorcraft   1. Outer loop: 
pitch and roll  
2. Inner loop: 
moment controls 
of lateral and 
longitudinal 
cyclic, and tail 
rotor collective 
pitch   

1. PID controller 
2. Neural network 
based controller  
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